Как растет фолликул по дням: Рост фолликулов по дням цикла

Содержание

Рост фолликулов по дням цикла

Ежемесячно в организме женщины происходят циклические изменения, заключающиеся в созревании фолликулов, овуляции и подготовке к возможной имплантации. Первая фаза цикла характеризуется поэтапным созреванием фолликулов. Сколько растет фолликул? Как происходит рост фолликула по дням? Какие изменения претерпевает фолликул?

 

Рост фолликула по дням

Изменения в яичниках начинаются с первого дня менструального цикла. Ежемесячно начинается созревание сразу нескольких фолликулов.

 

Фолликулы на 5 день цикла. На данном этапе при ультразвуковом сканировании визуализируется 6-10 антральных фолликулов. Они имеют диаметр около 2-4 миллиметров и располагаются преимущественно по периферии яичника.

 

Фолликулы на 7 день цикла. На седьмой день размер фолликулов увеличивается до 6 миллиметров, уже видна сеть кровеносных капилляров вокруг доминантного фолликула.

 

Фолликул на 8 день цикла. Уже можно определить, какой фолликул продолжит дальнейшее созревание (доминантный фолликул) – он имеет несколько большие размеры.

 

Фолликул на 9 день цикла. Продолжается рост доминантного фолликула, остальные отстают в темпе роста. Фолликул на 10 день цикла. На десятый день уже четко визуализируется доминантный фолликул. Его диаметр составляет 14-15 миллиметров. В это время размер других фолликулов составляет около 8 мм, и они постепенно уменьшаются – происходит их атрезия.

 

Фолликул на 11 день цикла. Продолжает расти доминантный фолликул. Фаза средней пролиферации характеризуется увеличением его диаметра примерно на 22 мм за сутки. Размер фолликула составляет около 16 мм.

 

Фолликул на 12 день цикла, фолликул на 13 день цикла. Продолжается процесс увеличения размеров доминантного фолликула. На этапе поздней пролиферации клетки фолликула уже вырабатывают большое количество эстрогенов.

 

Фолликул на 14 день цикла. Доминантный фолликул уже значительно увеличился в размерах: его диаметр составляет от 18 до 25 миллиметров. На УЗИ видны характерные признаки скорой овуляции: виден двойной контур доминантного фолликула, его фрагментарное утолщение, неровные внутренние контуры. Более заметна его васкуляризация.

 

Фолликул на 15 день цикла, фолликул на 16 день цикла. Именно в этот период при нормальном менструальном цикле происходит овуляция. Овуляция – это разрыв фолликула и выход яйцеклетки. При этом на УЗИ видно исчезновение доминантного фолликула либо уменьшение его диаметра и деформация стенок, а также появляется жидкость в дугласовом пространстве.

 

В дальнейшем на месте овулировавшего фолликула определяется желтое тело. Оно имеет неправильную форму, контуры неровные. Желтое тело постепенно увеличивается в размерах до 23-24 дня менструального цикла, затем происходит его уменьшение. В период менструации (первые дни следующего цикла) желтое тело на УЗИ уже не визуализируется.

 

Почему не растут фолликулы

При некоторых заболеваниях нарушается процесс роста и созревания фолликулов. Чаще всего причиной такого состояния является нарушение гормонального равновесия: патология яичников, гипофиза, гипоталамуса, других желез внутренней секреции. Причиной нарушения роста фолликула могут быть и соматические заболевания, тяжелые инфекционные заболевания, стрессы, тяжелые физические нагрузки. Нарушение роста фолликулов может быть причиной бесплодия, поэтому при любых отклонениях от нормального течения менструального цикла необходимо обратиться к специалисту для обследования и выяснения причины нарушений.

 

Российский центр доноров ооцитов предлагает широкий выбор доноров женщинам, нуждающимся в лечении бесплодия с применением донорских яйцеклеток. Обращайтесь к вам — и мы обязательно вам поможем!

 

Какого размера должен быть фолликул | Размер фолликула по дням

  1. Что такое фолликул?
  2. Размер фолликулов по дням цикла
  3. Зачем нужно знать про фолликулы и их размеры?
  4. Видеоролик: «Развитие фолликула и овуляция»

Фолликул — участок ткани в яичнике, в котором происходит созревание яйцеклеток. Чтобы фолликул созрел до размера, при котором наступает овуляция, необходима слаженная работа эндокринной системы.

Отслеживание роста осуществляется благодаря процедуре УЗИ и называется «фолликулометрия». Она позволяет выявить созревшие яйцеклетки и определить наступившую овуляцию.

Размер фолликула влияет на то, когда произойдет овуляция. Поэтому на стадии созревания всех фолликулов среди них появляется доминантный фолликул – тот, из которого выйдет яйцеклетка, пригодная к оплодотворению. Размер доминантного фолликула в среднем равен 20-25 мм.

 

В самом начале цикла в яичниках созревает до 15-20 яйцеклеток, которые расположены в фолликуле. Так каким же должен быть размер фолликула при овуляции? За основу будет взят стандартный цикл из 28 дней. Первый день цикла – начало месячных, последний день цикла – последний день перед следующими месячными.

 

 

 

 

 

 

 

 

 

 

Размер фолликула по дням равен:

1. 5-7 дней – размер фолликула 2-6 мм. Зачастую это третичные или антральные фолликулы. Их около 10-12 штук.

2. 8-10 день – появляется доминантный фолликул среди третичных. Размер доминантного фолликула будет 12-15 мм.

3. 11-14 день – происходит увеличение главного фолликула в среднем на 8 мм (за день прибавляется 2-3 мм). Поэтому перед овуляцией размер фолликула-гиганта будет 18-25 мм. Во время овуляции из доминантного фолликула высвобождается зрелая яйцеклетка. Остальные фолликулы при этом подвергаются атрезии.

На остальное время цикла приходится или встреча яйцеклетки со сперматозоидом, или же ее постепенное отмирание. Так будет происходить до тех пор, пока не наступит беременность.

Возможны случаи, когда доминантный фолликул не разрывается, овуляции не происходит. Тогда либо наступает атрезия фолликула (уменьшение и исчезновение), либо дальнейшее существование и развитие неовулировавшего фолликула (персистенция). В последнем варианте может образоваться фолликулярная киста.

Зачем нужно знать про фолликулы и их размеры?

Размер фолликулов имеет значение для диагностики бесплодия. В начале лечения стимулируется рост фолликулов с помощью приема гормональных препаратов. После этого все фолликулы принимают размер доминантного фолликула, в которых созревают годные к оплодотворению яйцеклетки. Чем больше число яйцеклеток, тем больше шансов на успешную беременность.

Затем происходит забор яйцеклеток при помощи пункции фолликулов, осеменение в пробирке и перенос эмбрионов в полость матки. Происходит наблюдение за тем, как приживется эмбрион. Если он не прижился, проводят повторный перенос запасных эмбрионов.

Точно рассчитать размеры фолликула очень важно для наступления долгожданной беременности.

Размеры фолликула по дням цикла и при овуляции

Рост фолликула и последующая овуляция созревшей в нем яйцеклетки являются ключевыми процессами, которые обеспечивают готовность женской репродуктивной системы к зачатию. Нарушение этого естественного механизма является одной из самых частых причин бесплодия. И все программы ЭКО включают этап стимуляции роста фолликулов для индукции гиперовуляции.

В зависимости от используемого протокола он проводится у биологической матери или у донора яйцеклеток. При этом обязательно проводят фолликулометрию, чтобы отследить количество созревающих фолликулов, их размер и готовность к овуляции.

Немного теории

Фолликулами называют особые образования в яичниках, состоящие из ооцита 1 порядка (незрелой яйцеклетки) и окружающих его нескольких слоев специальных клеток. Они являются основными структурными образованиями женских половых желез, выполняя эндокринную и репродуктивную функции.

Фолликулы закладываются еще внутриутробно. Их основой являются оогонии – первичные зародышевые половые клетки, которые мигрируют в зародышевый яичник примерно на 6 неделе беременности. После мейотического деления и пролиферации из этих предшественников образуются ооциты первого порядка. Эти незрелые половые клетки покрываются кубическим эпителием и формируют так называемые примордиальные фолликулы. Они будут пребывать в дремлющем состоянии до начала полового развития девочки.

В последующем примордиальные фолликулы последовательно преобразуются в преантральные, антральные и преовуляторные. Этот процесс называют фолликулогенезом. В норме он завершается овуляцией – выходом созревшей и готовой к оплодотворению яйцеклетки. На месте фолликула при этом образуется эндокринно активное желтое тело.

При наступлении зачатия оно сохраняется под действием хорионического гонадотропина. Вырабатываемый им прогестерон способствует пролонгации беременности. Во всех остальных случаях желтое тело редуцируется, что происходит перед месячными. Сопутствующее этому резкое падение уровня прогестерона и провоцирует начало менструации с отторжением разросшегося железистого (функционального) слоя эндометрия.

Возможна ситуация, когда созревший фолликул не овулирует. При этом он может продолжать увеличиваться в размерах, преобразуясь в фолликулярную кисту с редуцированной яйцеклеткой. Такие образования могут быть единичными и постепенно рассасывающимися. Но иногда кисты сохраняются на длительное время, деформируя поверхность органа. В этом случае говорят о синдроме поликистозных яичников. Такой диагноз является прогностически неблагоприятным для зачатия, он обычно сопровождается стойкими дисгормональными нарушениями и бесплодием.

Сколько фолликулов в яичниках?

Далеко не все изначально заложенные внутриутробно фолликулы в яичниках сохраняются к моменту полового созревания и в последующем развиваются. Около 2/3 из них гибнут и рассасываются. Этот естественный процесс называется апоптозом или атрезией. Он начинается сразу после закладки половых желез и продолжается всю жизнь. Девочка рождается примерно с 1-2 млн. примордиальных фолликулов. К началу полового созревания их среднее количество составляет 270-500 тыс. А в течение всего репродуктивного периода у женщины овулируют всего примерно 300-500 фолликулов.

Сумму всех фолликулов, способных к дальнейшему развитию, называют овариальным резервом. От него зависит продолжительность репродуктивного периода женщины и срок наступления менопаузы, количество продуктивных (протекающих с овуляцией) менструальных циклов и в целом способность к повторным зачатиям.

Процесс прогрессивного истощения овариального резерва в яичниках отмечается в среднем после 37-38 лет. Это означает не только снижение способности женщины к естественному зачатию, но и начало естественного снижения уровня основных половых гормонов. Прекращение развития фолликулов в яичниках означает наступление менопаузы. Она может быть естественной, ранней и ятрогенной.

Преждевременному истощению яичников способствуют курение и алкоголизация, работа на вредных производствах, облучение органов малого таза (в том числе проведенная лучевая терапия), химиотерапия. Большое значение имеют также воспалительные заболевания с поражением ткани яичников.

Определение овариального резерва – важнейшее исследование при диагностированном женском бесплодии. Оно необходимо для оценки перспективности проводимого консервативного лечения, вероятности естественного наступления беременности, целесообразности включения женщины в протокол со стимуляцией гиперовуляции.

Ключевые моменты фолликулогенеза

Фолликулогенез состоит из нескольких этапов (фаз).

Фаза преобразования премордиального фолликула в преантральный

Этот процесс начинается с момента полового созревания, является гонадотропинзависимым и занимает более 4 месяцев. При этом происходит активный рост ооцита. На его поверхности появляется zona pellucida (блестящая оболочка), которая состоит из синтезируемых созревающей яйцеклеткой 4 видов особых сложных  гликопротеидов. А сам фолликул увеличивается в размерах приобретает внешнюю соединительнотканную оболочку. Теперь его называют преантральным или первичным. В этой фазе могут одновременно находиться до 10-15 фолликулов.

Фаза образования антрального фолликула

Ооцит продолжает увеличиваться в размерах, а располагающиеся вокруг ооцита эпителиальные клетки активно размножаются и начинают секретировать жидкость. При этом фолликул претерпевает структурные изменение – внутри него появляются полость и гормонально активные гранулезные клетки, формируются наружная и внутренняя эпителиальные оболочки.

Этот этап характеризуется также началом эндокринного функционирования фолликула. Клетки его внутренней оболочки секретируют андрогены, которые трансформируются в гранулезном слое в эстрогены. В течение одного цикла у женщины может образовываться несколько антральных фолликулов. Но на следующий этап обычно переходит только один доминантный пузырек, остальные редуцируются. При одновременном созревании нескольких фолликулов есть вероятность формирования многоплодной беременности.

Фаза образования Граафова пузырька

Количество фолликулярной жидкости прогрессивно увеличивается, она оттесняет весь эпителий и яйцеклетку на периферию. Фолликул быстро растет и начинает выпячиваться через внешнюю оболочку яичника. Яйцеклетка в нем располагается на периферии на так называемом яйценосном холмике. Примерно за 2 суток до овуляции количество секретируемых эстрогенов существенно нарастает. Это по принципу обратной связи инициирует выброс гипофизом лютеинизирующего гормона, который и запускает процесс овуляции. На поверхности Граафова пузырька появляется локальное выпячивание (стигма). Именно в этом месте фолликул овулирует (разрывается).

В результате овуляции, готовая к оплодотворению яйцеклетка выходит за пределы яичника и попадает в брюшную полость. Здесь она захватывается ворсинами маточных труб и продолжает свою естественную миграцию навстречу сперматозоидам.

Как оценивают «правильность» фолликулогенеза?

Этапы фолликулогенеза имеют четкую взаимосвязь с днями овариально-менструального цикла. При этом они зависят не от возраста и расы женщины, а от ее эндокринного статуса.

Рост и развитие фолликула регулируется в первую очередь фолликулостимулирующим гормоном гипофиза. Он начинает вырабатываться только с началом полового созревания. На определенном этапе фолликулогенез дополнительно контролируется половыми гормонами, которые продуцируются клетками стенки самого развивающего фолликула.

Любой гормональный дисбаланс способен нарушать процесс созревания и овуляции яйцеклетки. При этом определение уровня гормонов далеко не всегда дает врачу всю необходимую информацию, хотя и позволяет определить ключевые эндокринные расстройства. Поэтому диагностика нарушений процесса фолликулогенеза – важнейший этап обследования женщины на этапе планирования беременности и при выявлении причины бесплодия.

При этом врача интересует, до какого размера растет фолликул и достигает ли он стадии Граафова пузырька. Обязательно отслеживают, происходит ли овуляция и формируется ли достаточное по размеру желтое тело. При ановуляторных циклах определяют максимальный размер развивающихся фолликулов.

Доступным, информативным и при этом технически несложным методом является фолликулометрия. Так называют мониторинг созревания фолликулов с помощью УЗИ. Он проводится в амбулаторных условиях и не требует какой-либо специальной подготовки женщины. Фолликулометрия является динамическим исследованием. Требуется несколько повторных сеансов УЗИ для достоверного мониторинга происходящих в яичниках изменений.

В процессе фолликулометрии специалист определяет количество, расположение и диаметр зреющих фолликулов, отслеживает формирование доминантного пузырька, определяет размер фолликула перед овуляций. На основании этих данных можно  спрогнозировать наиболее благоприятный день цикла, чтобы забеременеть естественным путем.

При протоколах ЭКО такой мониторинг позволяет оценить ответ на проводимую гормональную терапию, назначить дату для введения препаратов для стимуляции овуляции и последующего пункционного забора яйцеклеток. Ключевым параметром фолликулометрии является размер фолликула по дням цикла.

Нормы фолликулогенеза

Фолликулометрия проводится в определенные дни цикла, соответствующие ключевым этапам фолликулогенеза. Полученные во время повторных исследований данные сравниваются со среднестатистическими нормами. Какой размер фолликула должен быть в различные дни овариально-менструального цикла? Какие колебания считаются допустимыми?

Нормальный размер фолликула в разные дни цикла для женщины в возрасте 30 лет с 28-дневным циклом, не принимающей оральные контрацептивы и не проходящей лечение с гормональной стимуляцией овуляции:

  • В 1-4 дни цикла обнаруживают несколько антральных фолликулов, каждый из которых не превышает 4 мм в диаметре. Они могут располагаться в одном или в обоих яичниках. Их количество зависит от возраста женщины и имеющегося у нее овариального резерва. Норма, если в обоих яичниках суммарно созревает одновременно не более 9 антральных фолликулов.
  • На 5 день цикла антральные фолликулы достигают размера 5-6 мм. Их развитие достаточно равномерное, но уже на этом этапе возможна атрезия некоторых пузырьков.
  • На 7 день определяется доминантный фолликул, его размер в среднем 9-10 мм. Именно он начинает активно развиваться. Остальные пузырьки будут постепенно редуцироваться, при этом они могут определяться в яичниках и во время овуляции.
  • На 8 день цикла размер доминантного фолликула достигает 12 мм.
  • На 9 день пузырек вырастает до 14 мм. В нем явно определяется фолликулярная полость.
  • 10 день – размер достигает 16 мм. Остальные пузырьки продолжают уменьшаться.
  • На 11 день фолликул увеличивается до 18 мм.
  • 12 день – размер продолжает нарастать за счет фолликулярной полости и достигает 20 мм.
  • 13 день – Граафов пузырек диаметром 22 мм (это минимальный размер фолликула для овуляции в естественном цикле). На одном его полюсе видна стигма.
  • 14 день – овуляция. Обычно лопается фолликул, достигнувший 24 мм в диаметре.

Отклонения от этих нормативных показателей в сторону уменьшения являются прогностически неблагоприятными. Но при оценке полученных результатов фолликулометрии следует учитывать продолжительность естественного цикла женщины. Иногда встречается ранняя овуляция. При этом фолликул достигает необходимого размера на 8-12 дни цикла.

Размер фолликулов при ЭКО

При протоколах ЭКО овуляция является медикаментозно индуцированной и заранее спланированной.

Размер и рост фолликула по дням цикла и во время овуляции -какая норма?

Организм женщин подвержен изменениям в течение всего менструального цикла. Индикатором происходящих изменений может быть растущий фолликул, представляющий собой полость в яичнике, в которой созревает яйцеклетка. При рождении яичники девочки содержат примерно 1-2 млн. фолликулов, к началу репродуктивного возраста их остается около 300-500.

Менструальный цикл и изменения в фолликуле

Менструальный цикл

В начале менструального цикла (фолликулярная фаза) под действием фолликулостимулирующего гормона (ФСГ) в яичнике одновременно начинает созревать несколько фолликулов, но только один из них развивается быстрее, в редких случаях могут развивается два или более, что делает возможным зачатие двойни. Во время овуляционной фазы лютеинизирующий гормон (ЛГ) стимулирует доминантный (тот, который развивался быстрее) фолликул расти дальше и лопаться, выпуская яйцеклетку. После овуляции организм женщины вступает в лютеиновую фазу, где желтое тело – образование в фолликуле – растет на яичнике и стимулирует выработку прогестерона и подавляет выработку ФСГ и ЛГ. Заключительной фазой является менструация, во время которой исчезает желтое тело.

Фолликулогинез

Развитие фолликула

В медицине процесс созревания и развития фолликулов называется фолликулогинезом, включающим в себя 3 стадии:

  • Фаза превращенияпремордиальныхфолликулов в преантральные, происходит увеличение 10-15 фолликулов и формирование у них соединительной оболочки.
  • Фаза формированияантральногофолликула, внутри образуется полость, продолжается дальнейшее развитие доминантного фолликула.
  • Фаза возникновенияГраафовапузырька, увеличивается объем фолликулярной жидкости и происходит разрыв с выходом яйцеклетки.

Размер фолликула

В разные дни женского цикла фолликул имеет разные размеры, соответствие размера некоторым нормам свидетельствует о здоровье репродуктивной системы и о способности женщины забеременеть. С начала менструального цикла и до момента выхода яйцеклетки в фаллопиеву трубу (овуляция) фолликул постоянно увеличивается в размере, его нормальные значения представлены в таблице.

  • Примерно с пятого дня фолликулы возможно увидеть с помощью ультразвукового исследования, их местонахождение – на периферии яичника, размеры – до 6 мм.
  • После восьмого дня выявляется доминантный, так как его размер значительно дольше других, видна его капиллярная сетка.
  • На десятый день видно, что остальные фолликулы регрессируют, то есть погибают, уменьшаясь в размерах.
  • После четырнадцатого дня фолликул достигает своих максимальных размеров и наступает овуляция: фолликул после разрыва или не визуализируется совсем, или выявляется остаточная жидкость.

Когда овуляция произошла, на его месте образуется желтое тело. Для него характерны: неровные края и ассиметричная форма, оно увеличивается где-то до двадцать четвертого дня, затем постепенно уменьшается.

Несоответствие нормам свидетельствует о проблемах в репродуктивном здоровье женщины: при неправильном развитии фолликула яйцеклетка не созревает и зачатие становится невозможным.


Причины неправильного развития разнообразны:
  • сбои в работе гипоталамуса и гипофиза,
  • кисты в яичниках,
  • воспаления и инфекции женских половых органов,
  • недоразвитость яичников,
  • стрессы,
  • онкология,
  • индекс массы тела ниже 17,5.

Фолликулометрия

Вычислить размер фолликула самостоятельно невозможно, для этого проводится фолликулометрия – ультразвуковое исследование, позволяющее отследить развитие фолликула. Данная процедура рекомендована женщинам с бесплодием или с нарушениями менструального цикла. Исследование дает возможность:

  • определить точную дату наступления овуляции,
  • выявить отклонения в работе яичников,
  • наблюдать за эффективностью проводимого лечения.

При фолликулометии может быть выявлена одна их четырех основных патологий:

  • Фолликулярная киста – образование в яичнике, возникающее в том случае, когда не происходит разрыв фолликула и яйцеклетка не выходит в фаллопиеву трубу. Он продолжат дальше находиться в яичнике и накапливать кистозную жидкость.
  • Атрезия – патология, при которой фолликул развивается до определённого момента, а затем замирает и погибает.
  • Персистенция – сохранность активного вируса в ткани яичника, в такой ситуации фолликул развивается, но не разрывается (кистозная жидкость не образуется).
  • Лютеинизация– образование желтого тела совместно с развитием фолликула.

Процедура фолликулометрии осуществляется, как правило, в три этапа:

  • При первом УЗИ выявляютсяантаральныефолликулы (из одного из которых впоследствии формируется доминантный).
  • Второе УЗИ проводится через 3 дня: оно выявляет доминантный фолликул, определяет его размер и, если подобное имеет место быть, его обратное развитие.
  • На третьем УЗИ определяется его максимальный размер, что свидетельствует о том, что скоро произойдет его разрыв.

Стоит отметить, что бывают ситуации, когда фолликулостимулирующая фаза удлиняется и может потребоваться большее количество ультразвуковых исследований.

Фолликулометрия позволяет пациентке не только выявить отклонения, но и определить и причины.

Стимуляция овуляции

Стимуляция овуляции введением лекарств

Под стимуляцией овуляции в медицине понимают совокупность процедур, осуществляемых в медицинском учреждении, их цель – наступление беременности при бесплодии. Под бесплодием понимается ситуация, когда женщина репродуктивного возраста не беременеет в течении года при регулярной половой жизни без предохранения.

Стимуляцию овуляции при бесплодии врачи проводят в двух случаях: когда оно обусловлено нарушениями процесса фолликулогинеза и при неясных причинах.

Процедура может быть осуществлена двумя схемами:

  • Ввведение«Кломифена», который является синтетических эстрогеном, после его отмены наблюдается выброс лютеинизирующего и фолликулостимулирующего гормонов и начинается развитие фолликула. Процедура проводится, как правило, женщинам до 35 лет.
  • После 35 лет применяется вторая схема: более интенсивная стимуляция, которая может послужить причиной многоплодной беременности.

После стимуляции необходимо проведение трансвагинального ультразвукового исследования, через 2-3 дня после овуляции. Если процедура была успешной, то:

  • не будет выявлен доминантный фолликул,
  • будет выявлено желтое тело и жидкость за маткой.

Но если УЗИ провести позднее необходимого срока, то желтое тело не будет выявлено.

Размер фолликула по дням цикла: таблица размера, характеристика

В разные дни менструального цикла фолликулы имеют определенный размер, по мере созревания они увеличиваются, а перед месячными они разрываются, высвобождая половую клетку. Знание об изменении диаметра фолликулярной ткани важно, так как оно помогает рассчитать период овуляции, а также определить параметры здоровья репродуктивной системы женщины. Какой размер фолликула по дням цикла и почему он может перестать расти?

Что такое фолликул

«Зачаточные» половые клетки заложены в организме каждой девушки еще до ее рождения, их внутри яичников около 8-10 тысяч штук. Но изначально такие зачатки еще не готовы к оплодотворению, ведь они должны пройти несколько последовательных делений для созревания. Чтобы защитить яйцеклетку во время ее роста и превращения, вокруг нее нарастает несколько слоев эпидермальной ткани – это и есть фолликул, который напоминает эпителиальный кокон.

Фолликулярная ткань находится под влиянием эндокринной системы, ее увеличение и развитие регулируют гормоны самих яичников, а также гипофиза, косвенное влияние наблюдается со стороны надпочечников. Например, ФСГ (фолликулостимулирующий гормон) стимулирует созревание примордиальных (зачаточных) фолликулов во время подросткового периода и в разные дни менструального цикла, а ЛГ (лютеинизирующий) способствует ускорению их роста для дальнейшего высвобождения половой клетки перед овуляцией.

Размер по дням цикла

Размеры фолликула меняются в разные дни менструального цикла. После окончания месячных под влиянием активных веществ яичников и гипофиза начинается развитие нескольких эпителиальных коконов (до 6-7 штук), но к восьмому дню после начала развития появляется доминантный фолликул, генная активность в котором была самая высокая, поэтому он быстрее всех достиг отметки в 8-10 мм. Оставшиеся эпителиальные коконы могут прекратить расти либо в них произойдет апоптоз, то есть запланированная клеточная смерть.

Развитие доминантного фолликула

После этого организм «концентрируется» на этом доминантном фолликуле, а рост остальных прекращается для экономии питательных ресурсов и энергии. Каждый день до начала овуляции наблюдается увеличение этого эпителиального кокона для яйцеклетки на 1,5-2 мм в диаметре. Яйцеклетка в этот период начинает созревать, проходит несколько последовательных делений, во время которых внутри нее концентрируются питательные вещества, появляются нужные оболочки (всего их у яйцеклетки 3 штуки).

На 11 день цикла величина фолликула составляет около 15-16 мм, после этого его рост немного замедляется. В этот период яйцеклетка уже находится на завершающем этапе своего развития, начинается подготовка к овуляции. На какой день она случится, зависит от активности эндокринной системы и состояния здоровья женщины, обычно это происходит на 15-16 сутки.

На 15 день цикла (иногда бывают сдвиги в 2-3 дня) фолликул достигает 22-24 мм в диаметре и наступает критическая точка, так как он уже не может больше увеличиваться, поэтому эпителиальный кокон рвется и половая клетка выходит наружу – в брюшную полость, а потом в маточные трубы.

Именно в этот период, который продлится всего 36-50 часов, может произойти оплодотворение. Но важно понимать, что под влиянием гормонов овуляция, то есть высвобождение яйцеклетки, может произойти раньше или позже. Если наблюдать за фолликулярной тканью во время овуляторной фазы, то можно увидеть как эпителиальный кокон резко увеличивается, происходит выброс яйцеклетки, а после этого он уменьшается, видны лишь его остатки (желтое тело).

Таблица роста фолликула

Прочитав короткую информацию про процесс развития фолликулов в яичниках, становится понятен сам алгоритм, но разобраться в точных данных сложно, поэтому ниже приведена простая таблица, в которой расписаны размеры эпителиального покрытия яйцеклетки в разные дни менструального цикла.

День цикла Размер фолликула
На 4-5 день до 6 мм
На 6-7 день до 8 мм
На 8 день до 9 мм
На 9 день 11-12 мм
На 10 день цикла 13,5-14 мм
На 11 день 15 мм
на 12-13 день до 18-19 мм
На 14 день 20,5-21 мм
На 15 день 22-24 мм

Показатели, представленные в таблице, являются установленной нормой развития фолликулов по дням цикла, но не зря гинеколог для назначения контрацептивов или определения «безопасных» дней цикла, проверяет данные размеров для девушки индивидуально, ведь скорость созревания и роста яйцеклетки в фолликулярном коконе зависит от ее наследственности, работы эндокринной системы, уровня стресса и даже веса.

Почему не происходит рост фолликула

Отсутствие роста и развития фолликулов – одна из самых распространенных причин бесплодия у женщин. Отклонение от нормы развития фолликулярной ткани может появиться из-за:

  • нарушения в работе гипофиза и гипоталамуса;
  • дисфункция или недоразвитость яичников;
  • появление кист в яичниках или наличие мультифолликулеза;
  • воспалительные или инфекционные процессы в органах половой системы;
  • нарушение гормонального фона;
  • появление раковых новообразований в молочных железах, гипофизе или яичниках;
  • частые стрессовые воздействия на организм, тяжелая депрессия;
  • резкое похудение, ИМТ ниже 17,5;
  • ранний климакс.

Начать стоит с нарушения гормонального фона, которое становится главной причиной остановки роста фолликулов в яичнике. При опухолях или дисфункции гипофиза в организме девушки наблюдается нехватка гормона ФСГ, также нарушается регуляция выделения активных веществ яичниками и щитовидной железой. Такой же эффект ингибирования развития фолликулов наблюдается при недоразвитости или плохой работе яичников.

Если у девушки слишком низкий вес либо присутствуют инфекции половой системы, организм «понимает», что она не сможет выносить ребенка, поэтому в овуляции и рост фолликулов отпадает надобность. После лечения ЗППП или набора веса обычно фолликулярный цикл роста нормализуется.

Во время стрессовых периодов или затяжной депрессии надпочечники девушки выделяют больше нормы гормона стресса – кортизола, который повышает риск выкидыша плода, поэтому фолликулы в такой обстановке развиваться не будут. Восстановить их рост в такой ситуации не так легко, это может занять несколько месяцев, пока не стабилизуется гормональный фон.

Рост фолликулов продолжается от начала менструального цикла и до самой овуляции. Сначала развиваются несколько эпителиальных коконов, но уже на 8-9 день выделяется один доминантный, а остальные прекращают увеличиваться. Рост фолликулярной ткани длится до овуляции, во время которой происходит его разрыв и высвобождение созревшей яйцеклетки. Но при различных нарушениях в организме фолликулярный цикл может приостанавливаться.

httpss://youtu.be/4dA4TPPiL1Y

Размер фолликула по дням цикла

Природа продумала весь наш организм до мелочей. Хорошо, когда и сама женщина знает обо всех тонкостях и этих самых «мелочах» своего организма. Ведь эти знания могут помочь в такой важный момент, как зачатие ребенка. Заинтересовались? Тогда рассказываем.

Фолликулометрия

Этим непонятным словом называется процедура УЗИ, которая проводится для того, чтобы отслеживать рост и изменение фолликулов, находящихся в женских яичниках. Для чего это нужно?

Не секрет, что фолликулы яичников являются местом, в котором образуются яйцеклетки, благодаря которым впоследствии наступает долгожданное зачатие. Но и здесь не все так просто. Сам фолликул должен быть готов к тому, чтобы в нем зародилась яйцеклетка, а для этого он должен расти. Фолликулометрия как раз и наблюдает за жизнью фолликула, позволяет понять созрела ли яйцеклетка и наступила ли овуляция.

Какого размера должен быть фолликул?

Какой размер фолликула в яичниках считается нормальным и как он изменяется в зависимости от дня цикла, постараемся рассмотреть как можно подробнее. Для тех, кто немного путается, сразу уточним, что первым днем цикла считается первый день месячных и, соответственно, последним днем цикла будет последний день перед месячными. Приведенный ниже пример рассчитан на классический цикл в 28 дней.

  1. На 5-7 день цикла все фолликулы, находящиеся в яичнике не превышают 2-6 мм в диаметре.
  2. На 8-10 день определяется доминантный фолликул, в котором будет развиваться яйцеклетка. Размер доминантного фолликула перед овуляцией равен около 12-15 мм. Остальные, достигнув примерно 8-10 мм, уменьшаются и со временем исчезают.
  3. На 11-14 день наш главный фолликул вырастает примерно на 8 мм (по 2-3 мм за день). При овуляции размер фолликула будет составлять уже 18-25 мм. После чего, он должен лопнуть в ближайшее время и выпустить наружу яйцеклетку.

Примерно так и выглядит вся недолгая жизнь фолликула. На остальные дни цикла приходится либо встреча яйцеклетки с мужским семенем, либо ее «угасание». И так будет продолжаться, пока не наступит беременность.

Конечно, бывают случаи, когда доминантный фолликул не лопается и овуляция не происходит. А с фолликулом может начать происходить либо атрезия (обратное уменьшение и дальнейшее исчезновение), либо персистенция (продолжение существования и развития неовулировавшего фолликула). В последнем случае такой фолликул может превратиться в фолликулярную кисту.

Очень надеемся, что данная статья помогла вам определить ваши «горящие» дни и в скором времени вы узнаете, что в вас начала зарождаться новая жизнь.

 

Размер фолликула по дням цикла и способы его измерения

Созревание фолликулов и последующее развитие доминирующего является основой овуляторного процесса и возможности естественного оплодотворения яйцеклетки сперматозоидом. Нарушение развития этих клеток может привести к бесплодию. В разные дни размер фолликула по дням цикла меняется. По мере созревания он увеличиваются в размере, а перед овуляцией он лопается, высвобождая яйцеклетку.

Что такое фолликул и фолликулогенез?

Фолликулы закладываются в придатках девочки еще тогда, когда она находится в утробе матери. Первоначально их около 30 тысяч, но до начала полового созревания примерно половина из них погибнет – это естественный отбор. Фолликулом называются «зачаточные» половые клетки, основной функцией которых является защита яйцеклетки во время ее развития от внешних факторов, которые угрожают ее жизнеспособности. Защита обеспечивается за счет нескольких слоев эпидермиальной ткани.

Размер фолликула по дням менструального цикла разный. Но об этом мы поговорим немного позже. Развитие фолликулярного слоя контролируется эндокринной системой, а также гипофизом. Кроме этого на созревание зачаточных пузырьков косвенно оказывают влияние надпочечники.

В медицине процесс развития и роста пузырька с яйцеклеткой, носит название фолликулогенез, который включает в себя 3 стадии:

  1. Превращение премордиальных клеток в преантральные. Эта фаза характеризуется ускорением развития 10-15 фолликулов.
  2. Формирование антрального фолликула. В одном, реже в двух, образовывается полость и продолжается развитие. Тогда как другие впадают в анабиоз, регенерируют.
  3. Возникновение Граафова пузырька. На данном этапе происходит увеличение объема жидкости внутри клетки, что провоцирует ее разрыв и высвобождение яйцеклетки.

Фолликулярная фаза

Менструальный цикл разделяется на 2 фазы: фолликулярная и лютеиновая. Именно во время первой фазы происходит созревание «зачаточной» клетки, из которой в дальнейшем в случае оплодотворения будет развиваться плод.

Фолликулярная фаза начинается с первого дня новых месячных и завершается овуляцией. Продолжительность этой фазы составляет приблизительно ½ всего менструального цикла. Специальные клетки в этой фазе вырабатывают половые гормоны эстрогены.

На протяжении всей фолликулярной фазы ректальная температура не превышает отметки в 37°С. За 2-3 дня до овуляции температура поднимается на 1-1,2°С, а в день овуляции она резко падает. Измерение базальной температуры – это один из способов определения фертильной фазы – наилучшего времени для зачатия.

После фолликулярной фазы наступает лютеиновая. На этом этапе образуется желтое тело внутри пузырька на месте вышедшей яйцеклетки, за счет чего поддерживается баланс гормонов эстрогена и прогестерона, которые выделяются желтым телом с целью подготовки организма к возможной беременности.

Доминантный фолликул

Каждый месяц в придатках женщины 7-9 зачаточных клеток начинают развиваться более стремительно по отношению к своим «собратьям». После, их развитие приостанавливается, и организм «концентрируется» на одном – доминантном фолликуле. Размеры этого эпителиального кокона постоянно увеличивается.

Одновременно начинает созревать яйцеклетка, находящаяся внутри: она проходит несколько последовательных делений, что сопровождается скоплением питательных веществ и появлением наружных оболочек, которых у яйцеклетки всего 3.

Фолликулометрия – способ определить размер фолликула и овуляцию

Определить размер самостоятельно не представляется возможным. Для таких целей существует специальная процедура, которая называется фолликулометрией. Это ультразвуковое исследование, в ходе которого удается определить размер, количество и динамику роста зачаточных клеток.


Фолликулометрия показана женщинам, имеющим проблемы с естественным зачатием и с нарушениями менструального цикла. Также в ходе обследования можно определить:
  • точную дату овуляции;
  • неправильное функционирование придатков;
  • эффективность проводимой терапии.

Фолликулометрия дает возможность выявить наличие патологических заболеваний:

  • фолликулярная киста – новообразование в придатке, являющееся яйцеклеткой, которая не вышла после разрыва эпидермиального кокона в маточную трубу;
  • атрезия – патологическая недоразвитость ДФ;
  • персистенция – присутствие вируса в тканях придатка, который препятствует полноценному развитию яйцеклетки;
  • лютеинизация – нарушение развития «пузырька», когда желтое тело начинает развиваться в еще несозревшей клетки.

Специфика фолликулометрии заключается в следующем:

  1. Во время первой процедуры доктор определяет антральные фолликулы, один из которых в последствие станет доминантным.
  2. Через 3 дня проводится еще одно УЗИ, в ходе которого определяется присутствие или отсутствие ДФ.
  3. И в ходе третьей процедуры доктор определяет максимальную величину ДФ, что свидетельствует о приближении овуляции.

Размер фолликула по дням цикла

Каждый день он изменяется, растет. Существует специальные таблицы, данные в которых были получены на основании фолликулометрии, указывающие на норму развития.

Размер фолликула по дням цикла

Нормальный размер в разные дни цикла:

  1. 1-4 день – формирование антральных зачаточных клеток, каждая из которых не превышает в диаметральном размере 4 мм. Они могут появляться и развиваться в обоих придатках одновременно или поочередно в каждом из них.
  2. 5-6 день – клетки быстро увеличиваются в размере до 6 мм.
  3. Через неделю после начала менструального цикла определяется ДФ, его диаметральный размер достигает отметки в 10 мм. На этом этапе развитие других антральных клеток приостанавливается.
  4. 8 день – величина доминирующего пузырька может составлять уже 12 мм.
  5. 9 день – ДФ увеличивается в размере на 2 мм, то есть его размер в норме уже может составлять 14 мм.
  6. На 10 сутки – ДФ достигает в диаметре 16 мм, остальные продолжают редуцироваться.
  7. 11 сутки – размер главного фолликулярного кокона может достигать 18 мм.
  8. 12 сутки – на этом этапе цикла ДФ вырастает до 20 мм.
  9. 13 сутки – размер Граафова пузырька достигает 22 мм, а на одном из его полюсов просматривается стигма.
  10. 14-16 сутки – разрыв фолликулярных тканей, выход созревшей яйцеклетки. Как правило, на этом этапе величина ДФ составляет не более 24 мм.

Сильные отклонения от указанных норм в сторону уменьшения могут указывать на наличие патологии.

Итог

Резюмируя все вышесказанное, подведем небольшой итог:

  1. Фолликул – пузырек, в котором происходит развитие яйцеклетки и защита ее от внешних факторов, которые могут в той или иной степени помешать ее полноценному развитию.
  2. Сколько растет фолликул? Начало развития этой клетки совпадает с первым днем менструального цикла. То есть первый день месячных запускает новый цикл и тогда же начинается развитие группы зачаточных клеток, одна из которых в дальнейшем становится доминантной. Рост фолликулярной ткани длится до овуляции, во время которой происходит ее разрыв и высвобождение готовой к оплодотворению яйцеклетки. То есть продолжительность фазы созревания составляет 14-16 дней.
  3. Существуют нормативные показатели размера развивающегося ДФ, отклонение от которых чаще всего связано с развитием патологий различной этиологии.

А интересовались ли вы, какой спецификой характеризуется развитие фолликулов? Быть может, вам или вашим знакомым уже доводилось проходить фолликулометрию? Поделитесь с нами и нашими читателям интересными фактами и личным опытом, оставляя свои комментарии в конце публикации.

Значение мониторинга при лечении бесплодия

Для многих пар, которые проводят лечение бесплодия, особенно внутриматочное оплодотворение (ВМИ) или экстракорпоральное оплодотворение (ЭКО), обычным ритуалом становятся посещения для утреннего наблюдения во время цикла лечения. Целью этих, иногда частых приемов является внесение необходимых промежуточных корректировок в ваш протокол лечения и определение наилучшего времени для овуляции или извлечения яйцеклеток путем мониторинга уровня эстрогена и размера фолликула.Это помогает нам достичь наилучшего результата для вас, избегая при этом возможных осложнений.

МОНИТОРИНГ ПЕРЕД ЗАПУСКОМ ЦИКЛА

На вашем пути к фертильности с Shady Grove Fertility есть общие начальные этапы — первичная консультация с врачом, встреча с медсестрой медсестрой, первичный анализ крови на третий день, УЗИ, HSG и анализ спермы. Некоторые из этих тестов могли быть сделаны до посещения врача Shady Grove Fertility и могут быть включены без повторения.

После того, как ваш врач принял решение о плане лечения, начинается новый протокол. Этот визит очень важен, потому что он предоставляет вашему врачу базовые показатели уровня гормонов, а также возможность осмотреть матку и яичники с помощью ультразвука.

«Ультразвук дает нам представление о форме и мускулатуре матки, позволяет увидеть, есть ли какие-либо кисты, а также визуализировать слизистую оболочку матки», — объясняет доктор Лорна Тиммрек из офиса Shady Grove Fertility в Колумбии.«Кроме того, яйцеклетки должны быть« незрелыми », а фолликулы — в« состоянии покоя »».

Типичный исходный уровень гормонов в крови до начала приема лекарств для ВМИ и ЭКО должен составлять:

  • Эстроген — <50 пг / мл
  • ХГЧ — <1 мМЕ / мл
  • Прогестерон — <1 нг / мл

После того, как ваш врач изучит результаты анализа крови и УЗИ, вам позвонят из вашего медсестра, обычно во второй половине дня, чтобы подтвердить протокол приема лекарств и назначить встречу для следующего контрольного приема.

СКОЛЬКО НУЖЕН МОНИТОРИНГ?

Это вопрос, который обычно задают пациенты, когда начинают свой протокол лечения. Поскольку цикл лечения каждого пациента подбирается индивидуально для каждого пациента, необходим и объем мониторинга. Пациенту, принимающему пероральные препараты для стимуляции овуляции, такие как цитрат кломифена (кломид или серофен), с циклом ВМИ может потребоваться всего 2-3 сеанса мониторинга, тогда как женщинам, принимающим инъекционные препараты в сочетании с ВМИ или ЭКО, может потребоваться осмотр. до семи раз в двухнедельный период.

«Количество случаев, когда мы приводим пациента для наблюдения, коррелирует с силой лекарства в их протоколе лечения», — сказал д-р Роберт Стилман. «Пациентам, принимающим слабые стимулирующие препараты, такие как кломид, возможно, нужно будет реже наблюдать. Напротив, пациенты, принимающие более сильные инъекционные препараты, должны находиться под более пристальным наблюдением, чтобы вносить коррективы в количество принимаемых лекарств для обеспечения безопасности и эффективности ».

ЧТО ОЗНАЧАЕТ ВСЕ ЭТО МОНИТОРИНГ?

По мере продвижения цикла лечения многие пациенты задаются вопросом, каким должен быть идеальный размер фолликула и надлежащая толщина слизистой оболочки матки, прежде чем запускать IUI или извлечение яйцеклетки.При каждом посещении наши врачи ищут баланс между уровнем гормонов и реакцией яичников. А поскольку гормон эстроген является основным фактором как увеличения размера фолликула, так и наращивания слизистой оболочки матки, ключевым фактором является постоянный рост уровня гормона на протяжении всего цикла.

«Я всегда говорю пациентам:« Не нужно слишком много хорошего », — поясняет доктор Стиллман. «Мы следим за тем, чтобы фолликулы и слизистая оболочка матки росли с соответствующей скоростью. Поэтому, если мы видим пациента со слишком высокой реакцией на лекарство, мы скорректируем его, чтобы немного замедлить его, в то время как мы увеличим дозу лекарства для пациента, который может реагировать более медленными темпами.”

При первом наблюдении яичники пациента должны быть неактивными или «отдыхающими», что означает, что ни один из фолликулов не начал созревать. По мере введения лекарства фолликулы начинают расти, в среднем примерно на 2 мм в день на более поздних этапах стимуляции. Повышение уровня эстрогена в крови является гормональным свидетельством созревания фолликулов в яичниках.

«Скорость роста фолликулов зависит от фазы цикла стимуляции», — пояснил д-р.Тиммрек. «На раннем этапе рост фолликулов может быть минимальным, но как только фолликул (ы) перейдет в« активный »рост, они могут увеличиваться на 1-3 мм в день».

Количество образующихся фолликулов также зависит от варианта лечения. Для женщин, которые используют цикл ВМИ, врачи будут стараться поддерживать меньшее количество фолликулов, чтобы избежать риска многоплодной беременности, в то время как в более контролируемом цикле ЭКО женщина может производить большее количество фолликулов, потому что мы можем ограничить количество фолликулов. эмбрионы переносятся позже на «задний конец».”

«Ожидаемое количество фолликулов зависит от многих факторов, в первую очередь от возраста и общего овариального резерва», — сказал д-р Тиммрек. «Определение« хорошего »количества фолликулов варьируется от пациента к пациенту и основывается на их индивидуальном протоколе лечения и типе стимуляции, которой они подвергаются».

По мере роста фолликула яйцеклетка внутри начинает созревать. Многие пациенты спрашивают, «каков идеальный размер фолликула», чтобы вызвать овуляцию.

Доктор Тиммрек предлагает: «Зрелость яйцеклетки в фолликуле частично отражается размером фолликула; в среднем идеальный размер фолликулов составляет от 18 до 20 миллиметров или больше, в зависимости от типа используемых лекарств.”

Повышающийся уровень эстрогена также отвечает за формирование слизистой оболочки матки. Оптимальное измерение толщины для имплантации оплодотворенной яйцеклетки составляет более 7 мм, а предпочтительно более 8 мм, независимо от типа лечения, которому оно подвергается.

«Помимо толщины, мы ищем так называемый« узор из трех линий », — говорит д-р Тиммрек. «Это должно быть похоже на красивое перышко. Вот как мы называем красивую подкладку в середине цикла, которая должным образом насыщена эстрогеном.”

Когда размер свинцового фолликула (ов) достигает примерно 20 мм, уровень эстрогена повышается и слизистая оболочка матки представляет собой утолщенный «узор из перьев» в цикле лечения лекарствами, пора вводить ХГЧ или, для некоторых пациентов, подвергающихся ЭКО, Люпрона. . ХГЧ (или лупрон) вызывает заключительные важные фазы созревания яйцеклетки в фолликуле, а также овуляцию для цикла ВМИ или для планирования правильного времени для извлечения яйцеклетки в цикле ЭКО. Именно в это время фолликул, эстроген, который он производит, и отвечающая на него слизистая оболочка матки должны работать вместе, чтобы создать наилучшую среду для введения оплодотворенной яйцеклетки.

«Часто проверяя важные переменные в цикле лечения бесплодия во время этих мониторинговых посещений, мы можем предоставить пациентке наилучшие шансы на достижение своих целей успешного зачатия здоровой беременности и, в конечном итоге, родов здорового ребенка, будь то с помощью ВМИ или ЭКО », — поясняет доктор Стиллман.

Рост и развитие фолликулов | GLOWM

Фолликулогенез — это процесс, при котором рекрутированный примордиальный фолликул растет и развивается в специализированный графиевый фолликул, способный либо овулировать свою яйцеклетку в яйцевод в середине цикла для оплодотворения, либо умереть от атрезии.У женщин этот процесс длится долго, требуется почти 1 год для роста примордиального фолликула и его развития до стадии овуляции. В ходе фолликулогенеза рост достигается за счет пролиферации клеток и образования фолликулярной жидкости, тогда как развитие включает цитодифференцировку всех клеток и тканей в фолликуле. Только несколько фолликулов в яичниках человека выживают, чтобы завершить процесс цитодифференцировки, причем 99,9% из них умирают в результате запрограммированного механизма гибели клеток, называемого апоптозом.

Механизмы, регулирующие рост и развитие фолликулов, находятся под контролем изменяющихся концентраций лигандов ( i.е. гормонов и факторов роста). На эндокринном уровне фолликулогенез регулируется каскадным механизмом центральной нервной системы, передней доли гипофиза и яичников. Специализированные нейроны гипоталамуса выделяют импульсы гонадотропин-рилизинг-гормона (ГнРГ) в портальные кровеносные сосуды, которые действуют на гонадотрофов, вызывая пульсирующее высвобождение фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ), которые действуют на клетки фолликулов яичников. для контроля фолликулогенеза. Хотя ГнРГ, ФСГ и ЛГ критически важны в регуляции фолликулогенеза, гормоны и факторы роста, которые сами являются продуктами фолликула, могут действовать локально, модулируя (усиливая или ослабляя) действие ФСГ и ЛГ.Это аутокринная / паракринная система развивающихся фолликулов. Считается, что эта местная регуляторная система играет важную роль в сложных механизмах, управляющих временем фолликулогенеза и становится ли фолликул доминирующим или атретическим.

Хронология

Шаги и время фолликулогенеза человека показаны на рис. 2. У женщин фолликулогенез — длительный процесс. 1,2,3 В каждом менструальном цикле доминирующий фолликул, который овулирует своей яйцеклеткой, происходит из примордиального фолликула, который был задействован для инициирования роста почти на год раньше (рис.2). В широком смысле существует два типа фолликулов (рис. 2): преантральных (примордиальные, первичные, вторичные [класс 1], третичные [класс 2]) и антральных (графиальные, маленькие [класс 3, 4]. , 5], средний [6 класс], большой [7 класс], преовуляторный [8 класс]). Развитие преантральных и антральных фолликулов не зависит от гонадотропина и зависит от гонадотропина соответственно.

Рис. 2. Хронология фолликулогенеза в яичниках человека. Обратите внимание на временную шкалу на периферии. Преантральный период: Требуется 300 дней для рекрутированного зачатка, чтобы вырасти и развиться до стадии класса 2/3 (0,4 мм) или стадии кавитации (ранний антральный отдел). Атрезия может возникать в преантральных фолликулах 1, 2 и 3 класса. Антральный период: Фолликулу класса 4 (1-2 мм), если он выбран, требуется около 50 дней для роста и развития до преовуляторной стадии. Доминирующий фолликул цикла, по-видимому, выбран из когорты фолликулов класса 5, и ему требуется около 20 дней для развития до стадии овуляции.Атрезия часто встречается в антральном периоде. gc — количество гранулезных клеток; d, дни. (Из Gougeon A: Динамика роста фолликулов у человека: Модель на основе предварительных результатов. Hum Reprod 1:81, 1986.)

Скорость развития преантральных фолликулов медленная, требуется около 300 дней. для задействованного примордиального фолликула для завершения всего преантрального периода (рис. 2). Длительное время удвоения (около 10 дней) клеток гранулезы отвечает за медленную скорость роста. После образования антрального отдела в фолликуле 3 класса (около 0.4 мм) скорость роста увеличивается (рис. 2). Промежуток времени между формированием антрального отдела и развитием 20-миллиметрового преовуляторного фолликула составляет около 50 дней (рис. 2). Доминантный фолликул, по-видимому, выбран из когорты фолликулов класса 5 в конце лютеиновой фазы менструального цикла. 1,2,3,4 Для роста доминантного фолликула и его развития до преовуляторной стадии требуется от 15 до 20 дней (рис. 2). Атрезия может возникать во всех фолликулах (преантральном и антральном) после стадии фолликула класса 1 или вторичной; однако наибольшая частота встречаемости наблюдается в антральных фолликулах диаметром более 2 мм ( i.е. класс 5, 6 и 7) (рис.2).

Процесс

Фолликулогенез происходит в коре яичника (рис. 3). Фолликулы в коре головного мозга представлены в широком диапазоне размеров, представляющих различные стадии фолликулогенеза. Целью фолликулогенеза является создание единственного доминантного фолликула из пула растущих фолликулов. В этот процесс вовлечены четыре основных регуляторных события: рекрутирование, преантральное развитие фолликула, отбор и атрезия.

Рис.3. Микрофотография яичника взрослого примата. Фолликулярные и лютеиновые единицы видны в коре головного мозга, а крупные кровеносные сосуды и нервы — в продолговатом мозге. se, серозный или поверхностный эпителий; ta, tunica albuginea; pf — первичный фолликул; sf, вторичный фолликул; tf, третичный фолликул; gf, графиевый фолликул. (Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

ИСКОННЫЙ ФОЛЛИКЛ.

Все примордиальные фолликулы состоят из небольшого первичного ооцита (около 25 мкм в диаметре), задержанного на стадии диплотены (или диктиата) мейоза, одного слоя уплощенных (плоских) клеток гранулезы и базальной пластинки (рис.4). Средний диаметр примордиального фолликула человека составляет 29 мкм. 5 Благодаря базальной пластинке гранулеза и ооцит существуют в микроокружении, в котором не происходит прямого контакта с другими клетками. Примордиальные фолликулы не имеют самостоятельного кровоснабжения. 6 Следовательно, примордиальные фолликулы имеют ограниченный доступ к эндокринной системе.

Рис. 4. Электронная микрофотография первичного фолликула человека показывает уплощенные клетки гранулезы (GC), ооцит с его зародышевым пузырьком (GV) или ядром, тельце Balbiani (BB), со всеми собранными органеллами ооцита. у одного полюса GV и базальной пластинки (BL).(Из Эриксона Г.Ф.: Яичник: Основные принципы и концепции. В Фелиг П., Бакстер Дж. Д., Фроман Л. (ред.): Эндокринология и метаболизм. Нью-Йорк: МакГроу-Хилл, 1995.)

Набор персонала.

Первым важным событием в фолликулогенезе является набор. Вербовка — это процесс, при котором заблокированный примордиальный фолликул запускается, чтобы возобновить развитие и войти в пул растущих фолликулов. Все примордиальные фолликулы (ооциты), присутствующие в яичниках человека, образуются у плода между шестым и девятым месяцем беременности.Поскольку весь запас ооцитов в примордиальных фолликулах находится в профазе мейоза, ни один из них не способен к митотическому делению. Все ооциты (примордиальные фолликулы), способные участвовать в воспроизводстве в течение жизни женщины, присутствуют в яичниках при рождении (рис. 5). Общее количество примордиальных фолликулов в яичниках в любой момент времени называется резервом яичников (OR). 7 Процесс набора начинается вскоре после образования примордиальных фолликулов у плода, 8 и продолжается на протяжении всей жизни женщины до тех пор, пока пул примордиальных фолликулов не истощится в период менопаузы (рис.5). При старении наблюдается двухэкспоненциальное уменьшение OR 7 , 9 , 10 (рис. 6). Число примордиальных фолликулов неуклонно падает на протяжении более трех десятилетий, но когда OR достигает критического числа около 25000 в возрасте 37,5 ± 1,2 года, скорость потери примордиальных фолликулов увеличивается примерно в два раза (рис. 6). Это изменение OR связано с возрастным снижением плодовитости, что, возможно, является причиной возрастного увеличения ФСГ у женщин после 36 лет. 7

Рис. 5. Возрастные изменения количества примордиальных фолликулов (ооцитов) в яичниках человека. Левая панель: Количество яиц уменьшается от 6 месяцев беременности до 50 лет. (От Baker TG: Радиочувствительность ооцитов млекопитающих с особым упором на самку человека. Am J Obstet Gynecol 110: 746, 1971.) Правая панель: Микрофотографии, иллюстрирующие возрастное уменьшение примордиальных фолликулов ( стрелки, ) у человека. яичники.(Из Эриксона GF: Анализ развития фолликулов и созревания яйцеклетки. Semin Reprod Endocrinol 4: 233, 1986.)

Рис. 6. Связанное с возрастом уменьшение количества примордиальных фолликулов (PF) внутри оба яичника человека от рождения до менопаузы. В результате набора численность PF постепенно уменьшается с примерно 1 000 000 при рождении до примерно 24 000 в 37 лет. К 37 годам скорость набора увеличивается примерно вдвое, а количество PF снижается примерно до 1000 через 51 год ( i.е. — средний возраст начала менопаузы) (от Faddy MJ, Gosden RG, Gougeon A et al: Ускоренное исчезновение фолликулов яичников в среднем возрасте: значение для прогнозирования менопаузы. Hum Reprod 7: 1342, 1992.)

Механизм.

Первый видимый признак (рис. 7) рекрутирования примордиального фолликула — это то, что некоторые клетки гранулезы начинают менять плоскую форму на кубовидную. 5 Первая кубовидная клетка видна, когда примордиальный фолликул содержит 8 клеток гранулезы, и процесс завершается, когда число гранулез достигает 19 (рис.8). За изменением формы следует начало, хотя и медленное, синтеза ДНК и митоза в клетках гранулезы. 8 Изменение формы и приобретение митотического потенциала в клетках гранулезы являются отличительными признаками набора. Такие наблюдения предполагают, что механизмы, управляющие рекрутированием, могут включать регуляторный ответ на уровне клеток гранулезы. Рекрутмент не зависит от гипофиза и, вероятно, контролируется аутокринными / паракринными механизмами. Неизвестно, вызывает ли это стимулятор или потеря ингибитора; однако примордиальные фолликулы подвергаются быстрому рекрутированию при удалении из яичника и культивировании in vitro. 11 Эти наблюдения подтверждают идею ингибитора.

Рис. 7. Микрофотография нерастущего примордиального и вновь набранного (растущего) фолликула в яичнике человека. Обратите внимание на кубовидные клетки гранулезы ( стрелок, ) во вновь набранном примордиальном фолликуле.

Рис. 8. Связь между числом гранулез в наибольшем поперечном сечении фолликула и распределением уплощенных и кубовидных клеток.(Из Gougeon A, Chainy GBN: Морфометрические исследования мелких фолликулов в яичниках женщин в разном возрасте. J Reprod Fertil 81: 433, 1987.)

Для объяснения механизма рекрутирования было выдвинуто несколько различных гипотез. Во-первых, этот процесс, по-видимому, происходит в примордиальных фолликулах, ближайших к мозговому веществу, где видны кровеносные сосуды. Это подтверждает гипотезу о том, что воздействие питательных веществ или переносимых с кровью регуляторных молекул может играть роль в контроле рекрутирования.Во-вторых, был предложен механизм внутренних часов ооцитов для контроля рекрутирования. 12 В этой гипотезе часы связаны со временем, когда ооцит инициирует мейоз у эмбриона. Примечательно, что набор можно модулировать. 8 У грызунов скорость рекрутирования может быть снижена путем удаления вилочковой железы новорожденного, голодания или обработки экзогенными опиоидными пептидами. Это важные наблюдения, потому что они утверждают, что пути передачи сигналов лиганд-рецептор могут регулировать рекрутирование.Понимание регуляторных механизмов, лежащих в основе рекрутирования, остается важной задачей репродуктивной биологии.

ПРЕАНТРАЛЬНАЯ ФОЛЛИКЛА.

Ранние стадии фолликулогенеза можно разделить на три класса в зависимости от количества слоев клеток гранулезы, развития ткани теки и экспрессии небольшой полости или антрального отдела. Классы — первичные, вторичные и ранние третичные фолликулы (рис. 9). По мере увеличения морфологической сложности в фолликуле происходят важные клеточные и физиологические изменения, которые делают его способным реагировать на гонадотропины.В следующих разделах исследуются структурные и функциональные изменения, сопровождающие рост и развитие преантральных фолликулов.

Рис. 9. Диаграмма, показывающая размер и гистологическую организацию ранних развивающихся фолликулов человека во время гонадотропин-независимого периода фолликулогенеза. (Эриксон GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Frohman L (eds): Endocrinology and Metabolism. New York: McGraw-Hill, 1995.)

Первичный фолликул.

Первичный фолликул состоит из одной или нескольких кубовидных гранулезных клеток, которые расположены в одном слое, окружающем ооцит (рис. 10). Одновременно с изменением формы и митотической активностью, которые сопровождают рекрутинг (рис. 7 и 10), клетки кубовидной гранулезы начинают экспрессировать рецепторы ФСГ. 13 , 14 Механизм, лежащий в основе этого критического события в фолликулогенезе, остается неясным, но есть доказательства у грызунов 15 , что активин, полученный из гранулезы, может играть важную роль в экспрессии рецептора ФСГ посредством аутокринных / паракринных механизмов. (Рис.11). Хотя клетки гранулезы экспрессируют рецепторы ФСГ на этой очень ранней стадии фолликулогенеза, считается, что физиологические уровни ФСГ в плазме во время нормального менструального цикла не влияют на реакции гранулезы, поскольку первичные фолликулы не имеют независимой сосудистой системы. Тем не менее, поскольку поблизости находятся кровеносные сосуды (рис. 10), ФСГ-индуцированные изменения функции первичных фолликулов могут происходить в ответ на аномально высокие уровни ФСГ в плазме, такие как те, которые возникают во время индукции овуляции или старения.

Рис. 10. Рисунок развивающегося первичного фолликула, встроенного в соединительную ткань или строму коры яичника. Ядрышко и мейотические хромосомы очевидны в ядре ооцита. Митохондрии агрегированы на одном полюсе ядра ооцита (, т. Е. тельца Балбинни). Всего видно 19 кубовидных гранулезных клеток, одна из которых дает начало второму слою клеток (From Bloom W, Fawcett DW: A Textbook of Histology. Philadelphia: WB Saunders, 1975.)

Рис. 11. Схема предлагаемого механизма аутокринного контроля экспрессии рецепторов фолликулостимулирующего гормона в гранулезных клетках преантральных фолликулов. (Из Эриксона GF: Диссоциация эндокринной и гаметогенной функции яичников. Lobo R (ed): Perimenopause New York: Springer-Verlag, 1997.)

Начиная примерно с момента рекрутирования ооцит начинает расти и дифференцироваться.Этот период отмечен прогрессивным увеличением уровня синтеза РНК ооцитов. 16 В это время включен ряд важных генов ооцитов. Например, гены, кодирующие белки zona pellucida (ZP) (, т.е. ZP-1, ZP-2 и ZP-3), транскрибируются и транслируются. 17 Секретируемые белки ZP начинают полимеризоваться вблизи поверхности ооцита, образуя оболочку внеклеточного матрикса (пеллюцидную оболочку), которая в конечном итоге инкапсулирует яйцеклетку. Важность блестящей оболочки подчеркивается тем фактом, что углеводная часть ZP-3 представляет собой видоспецифичную молекулу, связывающую сперматозоиды. 18 Он отвечает за инициирование акросомной реакции в конденсированных сперматозоидах. 19

Во время развития первичного фолликула клетки гранулезы отправляют процессы через слой зоны, где они образуют щелевые соединения с клеточной мембраной ооцита или оолемме (Рис. 12). Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ и кальций. 20 , 21 Коннексин 37 (C × 37) представляет собой коннексин, полученный из ооцитов, который образует щелевые контакты между ооцитом и окружающими клетками гранулезы. 22 Данные, полученные от мышей с дефицитом C × 37, приписывают C × 37 обязательную роль в фолликулогенезе, овуляции и фертильности. 22 Большие щелевые соединения также присутствуют между самими клетками гранулезы (Рис. 12). C × 43 является основным белком щелевого соединения, экспрессируемым в клетках гранулезы. 23 В результате щелевых контактов первичный фолликул становится метаболически и электрически связанной единицей.Эта связь между гранулезой и ооцитом сохраняется на протяжении всего фолликулогенеза и отвечает за синхронное проявление важных активностей (положительных и отрицательных).

Рис. 12. Электронная микрофотография гранулезных клеток короны радиата ооцита в преантральном фолликуле. Отростки гранулезных клеток, пересекающие блестящую оболочку (ZP), образуют небольшие щелевые соединения ( стрелок, ) с плазматической мембраной ооцита. Между ячейками corona radiata видны более крупные щелевые соединения ( стрелки ).(Гилула Н.Б., Эпштейн М.Л., Бирс WH: Межклеточная коммуникация и овуляция: исследование комплекса кумулюс-ооцит. J Cell Biol 78:58, 1978, воспроизведено с разрешения Rockefeller University Press.)

Вторичный фолликул.

Вторичный фолликул — это преантральный фолликул с 2-10 слоями кубовидных или низко столбчатых клеток, которые образуют многослойный эпителий (рис. 13). Как видно на рисунке 10, переход от первичного ко вторичному фолликулу включает приобретение второго слоя клеток гранулезы.Этот переход осуществляется продолжающимся делением клеток гранулезы. Механизмы, регулирующие митоз гранулезы, плохо изучены. Однако захватывающие исследования на грызунах предоставили убедительные доказательства участия производного ооцитами фактора роста, называемого фактором дифференцировки роста-9 (GDF-9). GDF-9 является новым членом суперсемейства трансформирующих факторов роста β (TGF-β). 24 GDF-9 сильно экспрессируется в яичнике; локализуется только в ооцитах рекрутированных фолликулов. 25 У мышей с дефицитом GDF-9 рост и развитие фолликулов останавливаются на начальной стадии; следовательно, доминантные фолликулы не образуются, и самки бесплодны. 26 Соответственно, GDF-9 является обязательным для фолликулогенеза после первичной стадии, предположительно потому, что он является обязательным митогеном для клеток гранулезы. Фундаментальная концепция, вытекающая из этой работы, заключается в том, что ооцит играет ключевую роль в регуляции фолликулогенеза благодаря своей способности продуцировать новые регуляторные лиганды ( e.г. GDF-9), которые имеют решающее значение для фолликулогенеза.

Рис. 13. Типичный здоровый вторичный фолликул содержит полностью выросший ооцит, окруженный блестящей оболочкой, пять-восемь слоев гранулезных клеток, базальную пластинку и развивающуюся ткань теки с многочисленными кровеносными сосудами. (From Bloom W. , Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Одним из наиболее важных изменений, которые происходят в развитии вторичного фолликула, является приобретение слой тека.Эта ткань, которая состоит из слоя стромоподобных клеток вокруг базальной пластинки, впоследствии дифференцируется на внутреннюю и внешнюю теку (рис. 13). Развитие Theca сопровождается новообразованием множества мелких сосудов, предположительно за счет ангиогенеза (Fig. 13). Это критическое событие, потому что кровь циркулирует вокруг фолликула, доставляя питательные вещества и гормоны (, например, ФСГ, ЛГ) во вторичный фолликул, а также отходы и секреторные продукты. В связи с этим некоторые стромальные клетки внутреннего слоя экспрессируют рецепторы ЛГ. 27 Эти клетки впоследствии дифференцируются в стероидогенные клетки, называемые интерстициальными клетками теки (ТИК), наиболее вероятно в ответ на плазменный ЛГ, доставляемый сосудистой системой теки. 27 Все клетки гранулезы вторичных фолликулов экспрессируют рецепторы ФСГ. 13 Кажется вероятным, что диффузия плазменного ФСГ во вторичный фолликул может вызывать ФСГ-зависимые гранулезные ответы. Внешний слой клеток стромы впоследствии дифференцируется в клетки гладкой мускулатуры, называемые внешней текой.Эти гладкомышечные клетки иннервируются вегетативной нервной системой. 27

Во вторичном фолликуле ооцит завершает свой рост. Когда диаметр фолликула составляет около 200 мкм, ооцит достигает максимального размера и больше не растет, несмотря на то, что человеческий фолликул увеличивается в диаметре до 2 см и более (рис. 14). У грызунов хорошо известно, что клетки гранулезы играют обязательную роль в росте и дифференцировке ооцита. 28 , 29 Важным событием дифференциации, которое происходит, когда ооцит завершает свой рост, является приобретение способности возобновлять мейоз. 30 Ооциты обычно не возобновляют мейоз во время фолликулогенеза, и должен действовать механизм, ингибирующий этот процесс ( т.е. распад зародышевых пузырьков [GVBD]) и возобновление мейоза. Основной механизм торможения остается неизвестным; однако есть данные, подтверждающие концепцию, что цАМФ, полученный из гранулезы, может играть важную роль в ингибировании возобновления мейоза. 30 По такому механизму ФСГ индуцирует цАМФ в клетках гранулезы, который диффундирует в ооцит через щелевое соединение C × 37, где он продолжает ингибировать GVBD (рис.15).

Рис. 14. Диаграмма, показывающая соотношение между размером ооцита и размером фолликулов в яичнике младенца человека (от Мандл AM, Zuckerman S: Рост ооцита и фолликула у взрослой крысы .J Endocrinol 8: 126, 1952, воспроизведено с разрешения Общества эндокринологов.)

Рис. ГВБД) или возобновление меоизиса.Передача сигнала рецептора фолликулостимулирующего гормона (ФСГ) в клетках гранулезы приводит к увеличению продукции цАМФ. ЦАМФ может диффундировать через щелевые соединения гранулоза-ооцит коннексин-37 (C × 37), где он накапливается в больших количествах в ооплазме, чтобы ингибировать распад (BD) зародышевых пузырьков (GV) (, т.е. ингибирует возобновление мейоза или GVBD).

Третичный фолликул.

Когда преантральный фолликул завершает вторичную стадию развития, он содержит пять различных структурных единиц: полностью выросший ооцит, окруженный блестящей оболочкой, от шести до девяти слоев клеток гранулезы, базальную пластинку, внутреннюю и внешнюю теки. (Рис.13). Первым признаком начала развития третичного фолликула является появление полости в клетках гранулезы. 31 В ответ на внутренний стимул на одном полюсе ооцита начинает формироваться полость. Этот процесс, называемый кавитацией или началом образования антрального отдела, характеризуется накоплением жидкости между клетками гранулезы, что со временем приводит к образованию внутренней полости (рис. 16). По завершении кавитации устанавливается основной план графического фолликула, и все различные типы клеток занимают свои надлежащие места в ожидании стимулов, которые будут перемещать их по путям дифференцировки и пролиферации (рис.16). Основываясь на данных о фолликулах полиоцитов, механизм спецификации кавитации, вероятно, строго регулируется (Рис. 17).

Рис. 16. Микрофотография раннего третичного фолликула (диаметром 0,4 мм) при кавитации ранней стадии антрального отдела. ZP, zona pellucida; GC — клетки гранулезы; BL — базальная пластинка; TI, theca interna; TE, theca externa; наконечников стрел, митозов гранулезы (от Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Рис. 17. Микрофотография полиовулярного фолликула на ранней третичной стадии показывает места кавитации или раннего образования антрального отдела ( чистых пространств ) сразу над ооцитами ( звездочка ). Это событие, которое находится под внутриовариальным контролем, по-видимому, возникает особым синхронизированным образом и устанавливает полярность фолликула. ​​(Из Zamboni L: Comparative studies on ultra-structure of the mammaterial oocytes. In Biggers JD and Schultz AW (eds) : Оогенез. Балтимор: University Park Press, 19972.)

Что контролирует кавитацию или раннее образование антрального отдела желудка? Хорошо известно, что кавитация возникает у гипофизэктомированных животных, демонстрируя, что гормоны гипофиза, такие как ФСГ, не требуются для этого морфогенетического события. 32 С этой концепцией согласуется наблюдение, что кавитация возникает у мышей с дефицитом ФСГ-β. 33 , 34 Кажется разумным сделать вывод, что кавитация контролируется аутокринными / паракринными механизмами.В кавитацию вовлечены два фактора роста, экспрессируемые в самом фолликуле: активин и лиганд KIT. Обработка культивированных клеток гранулезы активином вызывает морфогенетические изменения, которые приводят к образованию гистологической единицы с антральной полостью. 35 Блокирование действия лиганда KIT в яичнике предотвращает образование антральных фолликулов; следовательно, овуляции нет, и самка бесплодна. 36 В этом отношении данные подтверждают концепцию, что щелевые соединения ооцитов также важны для кавитации.Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ. 20 , 21 C × 37, по-видимому, представляет собой коннексин, полученный из ооцитов, который образует щелевые соединения между ооцитом и окружающими клетками гранулезы. Данные, полученные на мышах с дефицитом C × 37, приписывают C × 37 обязательную роль в формировании графических фолликулов, овуляции и фертильности. 22 В совокупности все эти данные свидетельствуют о том, что активин, полученный из фолликулов, KIT и C × 37 участвуют в аутокринных / паракринных механизмах, контролирующих кавитацию.

ГРАФИАНСКИЙ ФОЛЛИКЛ.

Графический фолликул можно определить структурно как гетерогенное семейство относительно больших фолликулов (от 0,4 до 23 мм), характеризующихся полостью или антральным отделом, содержащим жидкость, называемую фолликулярной жидкостью или ликворными фолликулами. Характерной структурной единицей всех графиевых фолликулов является антральный отдел.По этой причине термин антральный фолликул правильно используется как синоним графиевого фолликула. Фолликулярная жидкость — это среда, в которой находятся клетки гранулезы и ооцит, и через которую регуляторные молекулы должны проходить на своем пути в эту микросреду и из нее. 37 Удивительно, но мы почти ничего не знаем о физиологическом значении антрального отдела и фолликулярной жидкости в фолликулогенезе. Понятно, что развитие фолликулов и овуляция происходят у птиц и земноводных, несмотря на отсутствие антрального отдела и фолликулярной жидкости.Тем не менее его присутствие у всех видов млекопитающих свидетельствует о его физиологическом значении.

Структура.

Графический фолликул представляет собой трехмерную структуру с центральным антральным отделом, окруженным множеством различных типов клеток (рис. 18). В графовом фолликуле есть шесть различных гистологических компонентов, включая внешнюю, внутреннюю, базальную пластинки, клетки гранулезы, ооцит и фолликулярную жидкость (рис. 18). Графический фолликул не меняет своей морфологической сложности по мере роста.Все графиевые фолликулы имеют одинаковую базовую архитектуру; Несмотря на то, что размер графических фолликулов резко изменился, их внешний вид остается более или менее неизменным.

Рис. 18. Схема архитектуры типичного графического фолликула класса 5. (Из Эриксона GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Broadus AE, Froman LA, (eds) : Эндокринология и метаболизм. 3-е изд. Нью-Йорк: McGraw-Hill, 1987.)

Theca externa (Рис.19) характеризуется наличием гладкомышечных клеток, 38 , 39 , которые иннервируются вегетативными нервами. 27 Хотя физиологическое значение наружной теки остается неясным, есть свидетельства того, что она сокращается во время овуляции и атрезии. 40 , 41 Изменения сократительной активности наружной теки могут быть связаны с атрезией и овуляцией; однако это не было строго доказано. Желтое тело сохраняет внешнюю теку на протяжении всей своей жизни, 42 , но значение при лютеинизации и лютеолизе неизвестно.

Рис. 19. Чертеж стенки графического фолликула. ​​(Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

Theca interna состоит из дифференцированных TIC, расположенных в матрице рыхлой соединительной ткани и кровеносных сосудов (рис. 19). Во всех граафовых фолликулах ЛГ является ключевым регулирующим гормоном функции TIC, и его важность в регулировании продукции андрогенов TIC in vivo и in vitro установлена. 27 Начиная с самых ранних стадий развития графиевых фолликулов, TIC выражают свое дифференцированное состояние в виде андрогенов (, т.е. клеток, продуцирующих андростендион). 27 Внутренняя тека обильно васкуляризирована и служит для доставки гормонов ( например, ФСГ, ЛГ), молекул питательных веществ, витаминов и кофакторов, необходимых для роста и дифференцировки ооцитов и клеток гранулезы.

Нам мало известно о регуляторных элементах, контролирующих сосудистую сеть теки.Функциональная связь между сосудистой сетью и развитием графиевых фолликулов подтверждается свидетельством 43 , что все граафовые фолликулы обезьян экспрессируют высокие уровни рецепторов ФСГ и ЛГ независимо от размера, но при введении 125 I-хорионический гонадотропин человека (ХГЧ) Системно только доминирующий граафовый фолликул, по-видимому, способен накапливать 125 I-ХГЧ в внутренней теке. Эти результаты предполагают, что доминирующий графиевый фолликул выражает повышенную васкуляризацию, которая играет важную роль в его выбранном созревании.В связи с этим интенсивно исследуются фактор роста эндотелия сосудов из фолликулов 44 , 45 и другие ангиогенные факторы, такие как эндотелин 46 .

Компартменты теки (, т.е. theca externa и interna) выражают свои дифференцированные функции в начале развития графического фолликула (при кавитации) и, по-видимому, конститутивно выражают зрелый фенотип на протяжении всей жизни и смерти графического фолликула.В широком смысле существует мало или совсем нет доказательств того, что серьезные изменения происходят в слоях теки на различных стадиях развития графиевых фолликулов, помимо тех, которые связаны с сосудистой и пролиферативной активностью. Это может означать, что именно клетки гранулезы (и, возможно, ооцит) являются вариабельными и, следовательно, ответственными за разнообразие графических фолликулов.

В граафовом фолликуле гранулезные клетки и ооцит существуют как масса точно сформированных и точно расположенных клеток (рис.18). Пространственное изменение создает по крайней мере четыре различных слоя или домена гранулезных клеток: самый внешний домен — это гранулезная мембрана, самый внутренний домен — периантраль, промежуточный домен — кучевой оофорус, а домен, расположенный рядом с ооцитом, — это лучшая корона ( Рис.20). Характерным гистологическим свойством мембранного домена является то, что он состоит из псевдостратифицированного эпителия высоких столбчатых гранулезных клеток, все из которых прикреплены к базальной пластинке.

Рис. 20. Схема структурной и функциональной неоднородности клеток гранулезы в здоровом фолликуле графита. Относительное положение гранулезной клетки в клеточной массе определяет ее способность к пролиферации и дифференцировке (от Erickson GF: Graafian follicle: A function definition. In Adashi EY (ed): Ovulation: Evolving Scientific and Clinical Concepts. New York : Springer-Verlag, 2000.)

Дифференцировку гранулезной клетки можно проследить по ее положению в клеточной массе (рис.20). Например, клетки в домене мембраны прекращают пролиферировать раньше, чем в центральном домене. 47 , 48 Способность клеток гранулезы во внутренних доменах продолжать делиться на протяжении всего развития графиевых фолликулов, предполагает, что они могут быть клетками-предшественниками. Прекращение митоза в домене мембраны характеризуется прогрессирующим выражением явной дифференцировки, при которой они принимают функциональный фенотип полностью дифференцированных клеток. Этот процесс требует временной и координированной экспрессии генов, которые составляют основу цитодифференцировки гранулезы.Механизмы, с помощью которых это происходит, включают лиганд-зависимые сигнальные пути, которые связаны с активацией и ингибированием определенных генов. Например, нормальная дифференцировка клеток гранулезной мембраны требует активации специфических генов, в том числе генов ароматазы цитохрома P450 (P450 arom ) 49 и рецептора LH, 50 и ингибирования структурных генов в пути апоптоза. . Напротив, клетки гранулезы в периантральном, кучевом и лучистом доменах пролиферируют, но не могут экспрессировать гены, участвующие в терминальной дифференцировке (рис.20).

Что контролирует неоднородность гранулезы? Все клетки гранулезы в здоровом фолликуле графита экспрессируют рецептор ФСГ, 13 , 51 , 52 , и было показано, что мышиные гранулезные клетки в мембранных и кучевых доменах продуцируют цАМФ в ответ на стимуляцию ФСГ. . 53 Эти наблюдения доказывают, что пост-цАМФ регуляторные события участвуют в аспектах гетерогенности гранулезы. Идея о том, что ооцит играет ключевую роль в возникновении различных паттернов цитодифференцировки гранулезы во время развития графиевых фолликулов, подтверждается исследованиями на грызунах. 54 Между ооцитом и клетками гранулезы происходит диалог, который оказывает большое влияние на фолликулогенез. В развивающихся граафовых фолликулах мышей дифференциальный паттерн пролиферации и дифференцировки между гранулезой в мембранных и кумулюсных доменах находится под контролем секретируемых морфогенов ооцитов. 54 Новый член семейства TGF-β, GDF-9, был обнаружен у мышей. 24 , 25 Окончательное доказательство того, что GDF-9 является обязательным для фолликулогенеза, было получено в исследованиях на мышах с дефицитом GDF-9. 26 У этих животных отсутствие GDF-9 приводило к остановке роста и развития фолликулов на начальной стадии, и самки бесплодны. Эти данные подтверждают идею о том, что GDF-9, секретируемый яйцеклеткой, является обязательным для развития графиевых фолликулов, цитодифференцировки и пролиферации гранулезных клеток, а также для женской фертильности. Клиническая значимость этой новой концепции демонстрируется наличием мРНК GDF-9 в яичниках человека. 25 Текущие проблемы состоят в выяснении механизмов, контролирующих экспрессию GDF-9, и в идентификации клеток-мишеней для GDF-9 и биологических процессов, которые регулирует GDF-9.Представление о том, что факторы роста ооцитов контролируют фолликулогенез и фертильность, может иметь важные последствия для физиологии и патофизиологии человека.

Классификация.

Все графиовы фолликулы можно условно разделить на две группы: здоровые и атретические (рис. 21). Основное различие между этими двумя группами заключается в том, происходит ли апоптоз в клетках гранулезы. Развитие графиевого фолликула (здорового или атретичного) со временем прогрессирует.Это означает, что вариабельность или гетерогенность являются нормальным следствием фолликулогенеза. Здоровый графиевый фолликул со временем становится все более дифференцированным, пока не достигнет преовуляторной стадии (рис. 22). Время этого процесса (рис. 2) у женщин составляет около 2 месяцев. 3 Когда это происходит, существует временной и пространственный паттерн экспрессии большого количества генов. В здоровых фолликулах эти гены управляют цитодифференцировкой, пролиферацией и образованием фолликулярной жидкости.В атретических фолликулах зависимые от времени изменения экспрессии генов вызывают прекращение митоза и экспрессию апоптоза (, т.е. атрезия фолликула). Во время атрезии ооциты и клетки гранулезы становятся обязанными экспрессировать гены, которые приводят к апоптозу. 55 В здоровых и атретичных графиевых фолликулах механизмы контроля включают лиганд-зависимые сигнальные пути, которые ингибируют или стимулируют экспрессию дифференцировки и апоптоза (рис. 22). Понимание молекулярных механизмов и клеточных последствий сигнальных путей лиганд-рецептор, которые контролируют судьбу граафовых фолликулов, является основной целью репродуктивных исследований.

Рис. 21. Два основных класса графиевых фолликулов: здоровые и атретичные. Каждый из них претерпевает регулируемый курс прогрессивных изменений, которые приводят к овуляции или апоптозу. (Из Эриксона GF: Графиевый фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer- Verlag, 2000.)

Рис. 22. Схема жизненного цикла графиевых фолликулов в яичниках человека.(Из Эриксона Г.Ф.: Графический фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer-Verlag, 2000.)

Процесс образования граафового фолликула рост и развитие можно условно разделить на несколько стадий в зависимости от размера фолликула (рис. 2 и 22). Для клиницистов и исследователей удобно и важно определять физиологические функции различных типов или классов фолликулов в течение всего цикла.У здорового графического фолликула человека есть предназначение завершить переход от малого (от 1 до 6 мм), среднего (от 7 до 11 мм) и большого (от 12 до 17 мм) до полностью дифференцированного преовуляторного состояния (от 18 до 23 мм). . Атретический графиновый фолликул предназначен для завершения перехода от малой к средней стадии (от 1 до 10 мм), но оказывается неспособным вырасти до больших размеров в нормальных физиологических условиях. 56 Поскольку процесс развития графиевых фолликулов является асинхронным, он в любой момент времени производит большую гетерогенную популяцию графических фолликулов в яичниках (рис.3). Каждый из этих морфологически различных графиевых фолликулов представляет собой динамическую структуру, претерпевающую поток или прогрессию изменений в развитии на пути к тому, чтобы стать более дифференцированным или более атретичным (Рис. 22). Следует иметь в виду, что это приводит к наличию крайне неоднородного пула графиевых фолликулов. Это неоднородность, из-за которой трудно прийти к простому функциональному определению графического фолликула.

Размер графического фолликула в значительной степени определяется размером антрального отдела, который определяется объемом фолликулярной жидкости, который определяется биодоступностью ФСГ в жидкости. 57 ФСГ является обязательным для развития графиевых фолликулов, и никакой другой лиганд сам по себе не обладает способностью индуцировать образование фолликулярной жидкости. В отсутствие ФСГ фолликулярная жидкость не образуется, и графитовые фолликулы не развиваются. Разрастание клеток фолликула также способствует росту графиевых фолликулов; В здоровых фолликулах клетки гранулезы и тека сильно разрастаются (в 100 раз), при этом антральный отдел заполняется фолликулярной жидкостью (рис.23). Эти события (, т. Е. увеличенное накопление фолликулярной жидкости и пролиферация клеток) ответственны за огромный рост здоровых граафиевых фолликулов. 3 , 58 Напротив, именно прекращение митоза и образование фолликулярной жидкости определяет размер атретического граафиевого фолликула.

Рис. 23. Изменения количества гранулезных клеток и объема фолликулярной жидкости в граафовых фолликулах человека на протяжении фолликулогенеза.Доминирующий фолликул при овуляции имеет диаметр около 25 мм и содержит около 50 миллионов клеток гранулезы и 7 мл фолликулярной жидкости (из McNatty KP: Гормональные корреляты развития фолликулов в яичнике человека. Aust J Biol Sci 34: 249, 1981. )

Выбор доминантного фолликула.

В каждом менструальном цикле яичники обычно производят единственный доминантный фолликул, который участвует в единственной овуляции. Морфометрический анализ нормальных яичников человека (рис.2 и 3) указывает на то, что доминирующий фолликул, который будет овулировать в последующем цикле, выбран из когорты здоровых фолликулов класса 5 размером 4,7 ± 0,7 мм в диаметре в конце лютеиновой фазы менструального цикла. 1,2,3, 59 Во время отбора фолликул каждой когорты содержит полностью выросший ооцит, около 1 миллиона клеток гранулезы, внутреннюю теку, содержащую несколько слоев TIC, и внешнюю теку, состоящую из гладкомышечных клеток ( Рис.3 и 23).

Характерной чертой доминантного фолликула является высокая скорость митоза в клетках гранулезы.Данные свидетельствуют о том, что вскоре после середины лютеиновой фазы скорость митоза гранулезы резко (примерно в два раза) увеличивается в клетках гранулезы во всех фолликулах когорты. 2 , 56 , 60 Это говорит о том, что лютеолиз может сопровождаться всплеском митоза в гранулезе когорты фолликулов класса 5. Первым признаком того, что был выбран один фолликул, по-видимому, является то, что клетки гранулезы в выбранном фолликуле продолжают делиться с относительно быстрой скоростью, в то время как пролиферация в гранулезе фолликулов другой когорты замедляется.Поскольку это различие становится очевидным в конце лютеиновой фазы, утверждалось, что отбор происходит на поздней лютеиновой фазе менструального цикла. Вследствие увеличения митоза доминантный фолликул продолжает быстро расти 3 , 4 во время фолликулярной фазы, достигая 6,9 ± 0,5 мм в дни с 1 по 5, 13,7 ± 1,2 мм в дни с 6 по 10 и 18,8 ± 0,5 мм на 11-14 дни. И наоборот, рост в фолликулах когорты происходит медленнее, и со временем атрезия становится все более очевидной в фолликулах недоминирующей когорты, предположительно из-за экспрессии специфических генов в апоптотическом пути. 56 Атретический фолликул редко достигает в диаметре более 10 мм, независимо от стадии цикла. 4 , 56 , 60

Процесс.

Имеются убедительные доказательства лабораторных животных 61 и экспериментов на приматах, 62 , что для достижения доминирования фолликула необходимо добиться вторичного повышения уровня ФСГ в плазме. Как показано на рисунке 24, вторичный подъем ФСГ у женщин начинается за несколько дней до того, как уровни прогестерона упадут до базального уровня в конце лютеиновой фазы, а уровни ФСГ остаются повышенными в течение первой недели фолликулярной фазы цикла. 63 Эксперименты на обезьянах продемонстрировали, что доминантный фолликул подвергается атрезии, если вторичное повышение уровня ФСГ предотвращается обработкой экзогенным эстрадиолом. 64 Важной концепцией репродуктивной биологии является то, что повышение биоактивного ФСГ является обязательным для отбора фолликулов и фертильности. 33 , 65 Похоже, что снижение выработки эстрадиола желтым телом является основной причиной вторичного повышения ФСГ 66 , а не падения ингибина А, производного от желтого тела (рис.24).

Рис. 24. Лютеино-фолликулярный переход у женщин. Данные представляют собой средние значения (± SEM) для суточных уровней ингибина A, ингибина B, ФСГ, эстрадиола и прогестерона при лютеин-фолликулярном переходе у женщин с нормальным циклом ( n = 5). Данные сосредоточены на дне менструации во втором цикле. (Из Welt CK, Martin KA, Taylor AE et al: Частотная модуляция фолликулостимулирующего гормона (ФСГ) во время лютеин-фолликулярного перехода: Доказательства контроля ФСГ ингибина B в нормальные женщины.J Clin Endocrinol Metab 82: 2645, 1997, с разрешения Общества эндокринологов.)

Как происходит вторичный рост выбора контроля ФСГ? Результаты исследований фолликулярной жидкости человека подтверждают вывод о том, что повышение уровня ФСГ в плазме приводит к прогрессивному накоплению относительно высоких концентраций ФСГ в микросреде одного фолликула в когорте; этому фолликулу суждено стать доминирующим (рис. 25). При развитии здоровых (доминантных) фолликулов (фолликулы классов 5-8) средняя концентрация ФСГ в фолликулярной жидкости увеличивается примерно с 1.От 3 мМЕ / мл (около 58 нг / мл) до около 3,2 мМЕ / мл (около 143 нг / мл) через фолликулярную фазу. 4 , 67 Напротив, 4 , 67 уровни ФСГ низкие или неопределяемые в микросреде недоминирующих когортных фолликулов (рис. 25).

Рис. 25. Иллюстрация концепции, согласно которой доминантный фолликул содержит относительно высокие уровни фолликулостимулирующего гормона (ФСГ) в фолликулярной жидкости, тогда как уровни ФСГ низкие или неопределяемые в когортных фолликулах, предназначенных для атрезии. A. В доминантных фолликулах ФСГ в фолликулярной жидкости индуцирует активность P450 arom , которая метаболизирует андрогенный субстрат до эстрадиола (E 2 ). В таких фолликулах E 2 и андростендион (A 4 ) накапливаются в фолликулярной жидкости в очень высоких концентрациях. B. В недоминантных фолликулах низкие уровни ФСГ приводят к недостатку гранулезных клеток (GC) и низким концентрациям эстрадиола, несмотря на высокие уровни A 4 .(Из Erickson GF, Yen SSC: Новые данные о фолликулярных клетках в поликистозных яичниках: предлагаемый механизм возникновения кистозных фолликулов. Semin Reprod Endocrinol 2: 231, 1984.)

Поступление ФСГ в фолликулярную жидкость в Считается, что кавитация обеспечивает индукционный стимул, который запускает процесс роста и развития графитовых фолликулов. На клеточном уровне именно рецептор ФСГ на клетке гранулезы является основным игроком в этом процессе. Когда соответствующий высокий порог ФСГ достигается в одном графовом фолликуле, он становится доминирующим. 31 Напротив, маленькие графиевые фолликулы в когорте с подпороговыми уровнями ФСГ становятся недоминантными (рис. 22 и 25). Механизм, с помощью которого один маленький графовый фолликул в когорте способен концентрировать высокие уровни ФСГ в своем микроокружении, остается одной из загадок физиологии яичников. Важным моментом является то, что эстрадиол, продуцируемый доминантным фолликулом, ингибирует вторичный рост ФСГ по механизму отрицательной обратной связи (рис. 24 и 26). Считается, что это обеспечивает подпороговый уровень ФСГ в фолликулах недоминантной когорты, что затем приводит к атрезии.Митоз в клетках гранулезы фолликулов атретической когорты можно стимулировать путем лечения менопаузальным гонадотропином человека (чМГ) на ранней фолликулярной фазе. 59 Если уровни ФСГ повышены до пороговых уровней в микросреде, то недоминантные фолликулы могут быть спасены от атрезии. Этот феномен может иметь значение для способа, которым экзогенный ФСГ или чМГ запускает образование множественных доминантных фолликулов у женщин, подвергающихся индукции овуляции.

Рис.26. Диаграмма, иллюстрирующая важные последствия повышения уровня фолликулостимулирующего гормона (ФСГ) в ранней фолликулярной фазе менструального цикла человека на рост и развитие доминирующего фолликула.

Рост и развитие фолликулов | GLOWM

Фолликулогенез — это процесс, при котором рекрутированный примордиальный фолликул растет и развивается в специализированный графиевый фолликул, способный либо овулировать свою яйцеклетку в яйцевод в середине цикла для оплодотворения, либо умереть от атрезии.У женщин этот процесс длится долго, требуется почти 1 год для роста примордиального фолликула и его развития до стадии овуляции. В ходе фолликулогенеза рост достигается за счет пролиферации клеток и образования фолликулярной жидкости, тогда как развитие включает цитодифференцировку всех клеток и тканей в фолликуле. Только несколько фолликулов в яичниках человека выживают, чтобы завершить процесс цитодифференцировки, причем 99,9% из них умирают в результате запрограммированного механизма гибели клеток, называемого апоптозом.

Механизмы, регулирующие рост и развитие фолликулов, находятся под контролем изменяющихся концентраций лигандов ( i.е. гормонов и факторов роста). На эндокринном уровне фолликулогенез регулируется каскадным механизмом центральной нервной системы, передней доли гипофиза и яичников. Специализированные нейроны гипоталамуса выделяют импульсы гонадотропин-рилизинг-гормона (ГнРГ) в портальные кровеносные сосуды, которые действуют на гонадотрофов, вызывая пульсирующее высвобождение фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ), которые действуют на клетки фолликулов яичников. для контроля фолликулогенеза. Хотя ГнРГ, ФСГ и ЛГ критически важны в регуляции фолликулогенеза, гормоны и факторы роста, которые сами являются продуктами фолликула, могут действовать локально, модулируя (усиливая или ослабляя) действие ФСГ и ЛГ.Это аутокринная / паракринная система развивающихся фолликулов. Считается, что эта местная регуляторная система играет важную роль в сложных механизмах, управляющих временем фолликулогенеза и становится ли фолликул доминирующим или атретическим.

Хронология

Шаги и время фолликулогенеза человека показаны на рис. 2. У женщин фолликулогенез — длительный процесс. 1,2,3 В каждом менструальном цикле доминирующий фолликул, который овулирует своей яйцеклеткой, происходит из примордиального фолликула, который был задействован для инициирования роста почти на год раньше (рис.2). В широком смысле существует два типа фолликулов (рис. 2): преантральных (примордиальные, первичные, вторичные [класс 1], третичные [класс 2]) и антральных (графиальные, маленькие [класс 3, 4]. , 5], средний [6 класс], большой [7 класс], преовуляторный [8 класс]). Развитие преантральных и антральных фолликулов не зависит от гонадотропина и зависит от гонадотропина соответственно.

Рис. 2. Хронология фолликулогенеза в яичниках человека. Обратите внимание на временную шкалу на периферии. Преантральный период: Требуется 300 дней для рекрутированного зачатка, чтобы вырасти и развиться до стадии класса 2/3 (0,4 мм) или стадии кавитации (ранний антральный отдел). Атрезия может возникать в преантральных фолликулах 1, 2 и 3 класса. Антральный период: Фолликулу класса 4 (1-2 мм), если он выбран, требуется около 50 дней для роста и развития до преовуляторной стадии. Доминирующий фолликул цикла, по-видимому, выбран из когорты фолликулов класса 5, и ему требуется около 20 дней для развития до стадии овуляции.Атрезия часто встречается в антральном периоде. gc — количество гранулезных клеток; d, дни. (Из Gougeon A: Динамика роста фолликулов у человека: Модель на основе предварительных результатов. Hum Reprod 1:81, 1986.)

Скорость развития преантральных фолликулов медленная, требуется около 300 дней. для задействованного примордиального фолликула для завершения всего преантрального периода (рис. 2). Длительное время удвоения (около 10 дней) клеток гранулезы отвечает за медленную скорость роста. После образования антрального отдела в фолликуле 3 класса (около 0.4 мм) скорость роста увеличивается (рис. 2). Промежуток времени между формированием антрального отдела и развитием 20-миллиметрового преовуляторного фолликула составляет около 50 дней (рис. 2). Доминантный фолликул, по-видимому, выбран из когорты фолликулов класса 5 в конце лютеиновой фазы менструального цикла. 1,2,3,4 Для роста доминантного фолликула и его развития до преовуляторной стадии требуется от 15 до 20 дней (рис. 2). Атрезия может возникать во всех фолликулах (преантральном и антральном) после стадии фолликула класса 1 или вторичной; однако наибольшая частота встречаемости наблюдается в антральных фолликулах диаметром более 2 мм ( i.е. класс 5, 6 и 7) (рис.2).

Процесс

Фолликулогенез происходит в коре яичника (рис. 3). Фолликулы в коре головного мозга представлены в широком диапазоне размеров, представляющих различные стадии фолликулогенеза. Целью фолликулогенеза является создание единственного доминантного фолликула из пула растущих фолликулов. В этот процесс вовлечены четыре основных регуляторных события: рекрутирование, преантральное развитие фолликула, отбор и атрезия.

Рис.3. Микрофотография яичника взрослого примата. Фолликулярные и лютеиновые единицы видны в коре головного мозга, а крупные кровеносные сосуды и нервы — в продолговатом мозге. se, серозный или поверхностный эпителий; ta, tunica albuginea; pf — первичный фолликул; sf, вторичный фолликул; tf, третичный фолликул; gf, графиевый фолликул. (Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

ИСКОННЫЙ ФОЛЛИКЛ.

Все примордиальные фолликулы состоят из небольшого первичного ооцита (около 25 мкм в диаметре), задержанного на стадии диплотены (или диктиата) мейоза, одного слоя уплощенных (плоских) клеток гранулезы и базальной пластинки (рис.4). Средний диаметр примордиального фолликула человека составляет 29 мкм. 5 Благодаря базальной пластинке гранулеза и ооцит существуют в микроокружении, в котором не происходит прямого контакта с другими клетками. Примордиальные фолликулы не имеют самостоятельного кровоснабжения. 6 Следовательно, примордиальные фолликулы имеют ограниченный доступ к эндокринной системе.

Рис. 4. Электронная микрофотография первичного фолликула человека показывает уплощенные клетки гранулезы (GC), ооцит с его зародышевым пузырьком (GV) или ядром, тельце Balbiani (BB), со всеми собранными органеллами ооцита. у одного полюса GV и базальной пластинки (BL).(Из Эриксона Г.Ф.: Яичник: Основные принципы и концепции. В Фелиг П., Бакстер Дж. Д., Фроман Л. (ред.): Эндокринология и метаболизм. Нью-Йорк: МакГроу-Хилл, 1995.)

Набор персонала.

Первым важным событием в фолликулогенезе является набор. Вербовка — это процесс, при котором заблокированный примордиальный фолликул запускается, чтобы возобновить развитие и войти в пул растущих фолликулов. Все примордиальные фолликулы (ооциты), присутствующие в яичниках человека, образуются у плода между шестым и девятым месяцем беременности.Поскольку весь запас ооцитов в примордиальных фолликулах находится в профазе мейоза, ни один из них не способен к митотическому делению. Все ооциты (примордиальные фолликулы), способные участвовать в воспроизводстве в течение жизни женщины, присутствуют в яичниках при рождении (рис. 5). Общее количество примордиальных фолликулов в яичниках в любой момент времени называется резервом яичников (OR). 7 Процесс набора начинается вскоре после образования примордиальных фолликулов у плода, 8 и продолжается на протяжении всей жизни женщины до тех пор, пока пул примордиальных фолликулов не истощится в период менопаузы (рис.5). При старении наблюдается двухэкспоненциальное уменьшение OR 7 , 9 , 10 (рис. 6). Число примордиальных фолликулов неуклонно падает на протяжении более трех десятилетий, но когда OR достигает критического числа около 25000 в возрасте 37,5 ± 1,2 года, скорость потери примордиальных фолликулов увеличивается примерно в два раза (рис. 6). Это изменение OR связано с возрастным снижением плодовитости, что, возможно, является причиной возрастного увеличения ФСГ у женщин после 36 лет. 7

Рис. 5. Возрастные изменения количества примордиальных фолликулов (ооцитов) в яичниках человека. Левая панель: Количество яиц уменьшается от 6 месяцев беременности до 50 лет. (От Baker TG: Радиочувствительность ооцитов млекопитающих с особым упором на самку человека. Am J Obstet Gynecol 110: 746, 1971.) Правая панель: Микрофотографии, иллюстрирующие возрастное уменьшение примордиальных фолликулов ( стрелки, ) у человека. яичники.(Из Эриксона GF: Анализ развития фолликулов и созревания яйцеклетки. Semin Reprod Endocrinol 4: 233, 1986.)

Рис. 6. Связанное с возрастом уменьшение количества примордиальных фолликулов (PF) внутри оба яичника человека от рождения до менопаузы. В результате набора численность PF постепенно уменьшается с примерно 1 000 000 при рождении до примерно 24 000 в 37 лет. К 37 годам скорость набора увеличивается примерно вдвое, а количество PF снижается примерно до 1000 через 51 год ( i.е. — средний возраст начала менопаузы) (от Faddy MJ, Gosden RG, Gougeon A et al: Ускоренное исчезновение фолликулов яичников в среднем возрасте: значение для прогнозирования менопаузы. Hum Reprod 7: 1342, 1992.)

Механизм.

Первый видимый признак (рис. 7) рекрутирования примордиального фолликула — это то, что некоторые клетки гранулезы начинают менять плоскую форму на кубовидную. 5 Первая кубовидная клетка видна, когда примордиальный фолликул содержит 8 клеток гранулезы, и процесс завершается, когда число гранулез достигает 19 (рис.8). За изменением формы следует начало, хотя и медленное, синтеза ДНК и митоза в клетках гранулезы. 8 Изменение формы и приобретение митотического потенциала в клетках гранулезы являются отличительными признаками набора. Такие наблюдения предполагают, что механизмы, управляющие рекрутированием, могут включать регуляторный ответ на уровне клеток гранулезы. Рекрутмент не зависит от гипофиза и, вероятно, контролируется аутокринными / паракринными механизмами. Неизвестно, вызывает ли это стимулятор или потеря ингибитора; однако примордиальные фолликулы подвергаются быстрому рекрутированию при удалении из яичника и культивировании in vitro. 11 Эти наблюдения подтверждают идею ингибитора.

Рис. 7. Микрофотография нерастущего примордиального и вновь набранного (растущего) фолликула в яичнике человека. Обратите внимание на кубовидные клетки гранулезы ( стрелок, ) во вновь набранном примордиальном фолликуле.

Рис. 8. Связь между числом гранулез в наибольшем поперечном сечении фолликула и распределением уплощенных и кубовидных клеток.(Из Gougeon A, Chainy GBN: Морфометрические исследования мелких фолликулов в яичниках женщин в разном возрасте. J Reprod Fertil 81: 433, 1987.)

Для объяснения механизма рекрутирования было выдвинуто несколько различных гипотез. Во-первых, этот процесс, по-видимому, происходит в примордиальных фолликулах, ближайших к мозговому веществу, где видны кровеносные сосуды. Это подтверждает гипотезу о том, что воздействие питательных веществ или переносимых с кровью регуляторных молекул может играть роль в контроле рекрутирования.Во-вторых, был предложен механизм внутренних часов ооцитов для контроля рекрутирования. 12 В этой гипотезе часы связаны со временем, когда ооцит инициирует мейоз у эмбриона. Примечательно, что набор можно модулировать. 8 У грызунов скорость рекрутирования может быть снижена путем удаления вилочковой железы новорожденного, голодания или обработки экзогенными опиоидными пептидами. Это важные наблюдения, потому что они утверждают, что пути передачи сигналов лиганд-рецептор могут регулировать рекрутирование.Понимание регуляторных механизмов, лежащих в основе рекрутирования, остается важной задачей репродуктивной биологии.

ПРЕАНТРАЛЬНАЯ ФОЛЛИКЛА.

Ранние стадии фолликулогенеза можно разделить на три класса в зависимости от количества слоев клеток гранулезы, развития ткани теки и экспрессии небольшой полости или антрального отдела. Классы — первичные, вторичные и ранние третичные фолликулы (рис. 9). По мере увеличения морфологической сложности в фолликуле происходят важные клеточные и физиологические изменения, которые делают его способным реагировать на гонадотропины.В следующих разделах исследуются структурные и функциональные изменения, сопровождающие рост и развитие преантральных фолликулов.

Рис. 9. Диаграмма, показывающая размер и гистологическую организацию ранних развивающихся фолликулов человека во время гонадотропин-независимого периода фолликулогенеза. (Эриксон GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Frohman L (eds): Endocrinology and Metabolism. New York: McGraw-Hill, 1995.)

Первичный фолликул.

Первичный фолликул состоит из одной или нескольких кубовидных гранулезных клеток, которые расположены в одном слое, окружающем ооцит (рис. 10). Одновременно с изменением формы и митотической активностью, которые сопровождают рекрутинг (рис. 7 и 10), клетки кубовидной гранулезы начинают экспрессировать рецепторы ФСГ. 13 , 14 Механизм, лежащий в основе этого критического события в фолликулогенезе, остается неясным, но есть доказательства у грызунов 15 , что активин, полученный из гранулезы, может играть важную роль в экспрессии рецептора ФСГ посредством аутокринных / паракринных механизмов. (Рис.11). Хотя клетки гранулезы экспрессируют рецепторы ФСГ на этой очень ранней стадии фолликулогенеза, считается, что физиологические уровни ФСГ в плазме во время нормального менструального цикла не влияют на реакции гранулезы, поскольку первичные фолликулы не имеют независимой сосудистой системы. Тем не менее, поскольку поблизости находятся кровеносные сосуды (рис. 10), ФСГ-индуцированные изменения функции первичных фолликулов могут происходить в ответ на аномально высокие уровни ФСГ в плазме, такие как те, которые возникают во время индукции овуляции или старения.

Рис. 10. Рисунок развивающегося первичного фолликула, встроенного в соединительную ткань или строму коры яичника. Ядрышко и мейотические хромосомы очевидны в ядре ооцита. Митохондрии агрегированы на одном полюсе ядра ооцита (, т. Е. тельца Балбинни). Всего видно 19 кубовидных гранулезных клеток, одна из которых дает начало второму слою клеток (From Bloom W, Fawcett DW: A Textbook of Histology. Philadelphia: WB Saunders, 1975.)

Рис. 11. Схема предлагаемого механизма аутокринного контроля экспрессии рецепторов фолликулостимулирующего гормона в гранулезных клетках преантральных фолликулов. (Из Эриксона GF: Диссоциация эндокринной и гаметогенной функции яичников. Lobo R (ed): Perimenopause New York: Springer-Verlag, 1997.)

Начиная примерно с момента рекрутирования ооцит начинает расти и дифференцироваться.Этот период отмечен прогрессивным увеличением уровня синтеза РНК ооцитов. 16 В это время включен ряд важных генов ооцитов. Например, гены, кодирующие белки zona pellucida (ZP) (, т.е. ZP-1, ZP-2 и ZP-3), транскрибируются и транслируются. 17 Секретируемые белки ZP начинают полимеризоваться вблизи поверхности ооцита, образуя оболочку внеклеточного матрикса (пеллюцидную оболочку), которая в конечном итоге инкапсулирует яйцеклетку. Важность блестящей оболочки подчеркивается тем фактом, что углеводная часть ZP-3 представляет собой видоспецифичную молекулу, связывающую сперматозоиды. 18 Он отвечает за инициирование акросомной реакции в конденсированных сперматозоидах. 19

Во время развития первичного фолликула клетки гранулезы отправляют процессы через слой зоны, где они образуют щелевые соединения с клеточной мембраной ооцита или оолемме (Рис. 12). Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ и кальций. 20 , 21 Коннексин 37 (C × 37) представляет собой коннексин, полученный из ооцитов, который образует щелевые контакты между ооцитом и окружающими клетками гранулезы. 22 Данные, полученные от мышей с дефицитом C × 37, приписывают C × 37 обязательную роль в фолликулогенезе, овуляции и фертильности. 22 Большие щелевые соединения также присутствуют между самими клетками гранулезы (Рис. 12). C × 43 является основным белком щелевого соединения, экспрессируемым в клетках гранулезы. 23 В результате щелевых контактов первичный фолликул становится метаболически и электрически связанной единицей.Эта связь между гранулезой и ооцитом сохраняется на протяжении всего фолликулогенеза и отвечает за синхронное проявление важных активностей (положительных и отрицательных).

Рис. 12. Электронная микрофотография гранулезных клеток короны радиата ооцита в преантральном фолликуле. Отростки гранулезных клеток, пересекающие блестящую оболочку (ZP), образуют небольшие щелевые соединения ( стрелок, ) с плазматической мембраной ооцита. Между ячейками corona radiata видны более крупные щелевые соединения ( стрелки ).(Гилула Н.Б., Эпштейн М.Л., Бирс WH: Межклеточная коммуникация и овуляция: исследование комплекса кумулюс-ооцит. J Cell Biol 78:58, 1978, воспроизведено с разрешения Rockefeller University Press.)

Вторичный фолликул.

Вторичный фолликул — это преантральный фолликул с 2-10 слоями кубовидных или низко столбчатых клеток, которые образуют многослойный эпителий (рис. 13). Как видно на рисунке 10, переход от первичного ко вторичному фолликулу включает приобретение второго слоя клеток гранулезы.Этот переход осуществляется продолжающимся делением клеток гранулезы. Механизмы, регулирующие митоз гранулезы, плохо изучены. Однако захватывающие исследования на грызунах предоставили убедительные доказательства участия производного ооцитами фактора роста, называемого фактором дифференцировки роста-9 (GDF-9). GDF-9 является новым членом суперсемейства трансформирующих факторов роста β (TGF-β). 24 GDF-9 сильно экспрессируется в яичнике; локализуется только в ооцитах рекрутированных фолликулов. 25 У мышей с дефицитом GDF-9 рост и развитие фолликулов останавливаются на начальной стадии; следовательно, доминантные фолликулы не образуются, и самки бесплодны. 26 Соответственно, GDF-9 является обязательным для фолликулогенеза после первичной стадии, предположительно потому, что он является обязательным митогеном для клеток гранулезы. Фундаментальная концепция, вытекающая из этой работы, заключается в том, что ооцит играет ключевую роль в регуляции фолликулогенеза благодаря своей способности продуцировать новые регуляторные лиганды ( e.г. GDF-9), которые имеют решающее значение для фолликулогенеза.

Рис. 13. Типичный здоровый вторичный фолликул содержит полностью выросший ооцит, окруженный блестящей оболочкой, пять-восемь слоев гранулезных клеток, базальную пластинку и развивающуюся ткань теки с многочисленными кровеносными сосудами. (From Bloom W. , Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Одним из наиболее важных изменений, которые происходят в развитии вторичного фолликула, является приобретение слой тека.Эта ткань, которая состоит из слоя стромоподобных клеток вокруг базальной пластинки, впоследствии дифференцируется на внутреннюю и внешнюю теку (рис. 13). Развитие Theca сопровождается новообразованием множества мелких сосудов, предположительно за счет ангиогенеза (Fig. 13). Это критическое событие, потому что кровь циркулирует вокруг фолликула, доставляя питательные вещества и гормоны (, например, ФСГ, ЛГ) во вторичный фолликул, а также отходы и секреторные продукты. В связи с этим некоторые стромальные клетки внутреннего слоя экспрессируют рецепторы ЛГ. 27 Эти клетки впоследствии дифференцируются в стероидогенные клетки, называемые интерстициальными клетками теки (ТИК), наиболее вероятно в ответ на плазменный ЛГ, доставляемый сосудистой системой теки. 27 Все клетки гранулезы вторичных фолликулов экспрессируют рецепторы ФСГ. 13 Кажется вероятным, что диффузия плазменного ФСГ во вторичный фолликул может вызывать ФСГ-зависимые гранулезные ответы. Внешний слой клеток стромы впоследствии дифференцируется в клетки гладкой мускулатуры, называемые внешней текой.Эти гладкомышечные клетки иннервируются вегетативной нервной системой. 27

Во вторичном фолликуле ооцит завершает свой рост. Когда диаметр фолликула составляет около 200 мкм, ооцит достигает максимального размера и больше не растет, несмотря на то, что человеческий фолликул увеличивается в диаметре до 2 см и более (рис. 14). У грызунов хорошо известно, что клетки гранулезы играют обязательную роль в росте и дифференцировке ооцита. 28 , 29 Важным событием дифференциации, которое происходит, когда ооцит завершает свой рост, является приобретение способности возобновлять мейоз. 30 Ооциты обычно не возобновляют мейоз во время фолликулогенеза, и должен действовать механизм, ингибирующий этот процесс ( т.е. распад зародышевых пузырьков [GVBD]) и возобновление мейоза. Основной механизм торможения остается неизвестным; однако есть данные, подтверждающие концепцию, что цАМФ, полученный из гранулезы, может играть важную роль в ингибировании возобновления мейоза. 30 По такому механизму ФСГ индуцирует цАМФ в клетках гранулезы, который диффундирует в ооцит через щелевое соединение C × 37, где он продолжает ингибировать GVBD (рис.15).

Рис. 14. Диаграмма, показывающая соотношение между размером ооцита и размером фолликулов в яичнике младенца человека (от Мандл AM, Zuckerman S: Рост ооцита и фолликула у взрослой крысы .J Endocrinol 8: 126, 1952, воспроизведено с разрешения Общества эндокринологов.)

Рис. ГВБД) или возобновление меоизиса.Передача сигнала рецептора фолликулостимулирующего гормона (ФСГ) в клетках гранулезы приводит к увеличению продукции цАМФ. ЦАМФ может диффундировать через щелевые соединения гранулоза-ооцит коннексин-37 (C × 37), где он накапливается в больших количествах в ооплазме, чтобы ингибировать распад (BD) зародышевых пузырьков (GV) (, т.е. ингибирует возобновление мейоза или GVBD).

Третичный фолликул.

Когда преантральный фолликул завершает вторичную стадию развития, он содержит пять различных структурных единиц: полностью выросший ооцит, окруженный блестящей оболочкой, от шести до девяти слоев клеток гранулезы, базальную пластинку, внутреннюю и внешнюю теки. (Рис.13). Первым признаком начала развития третичного фолликула является появление полости в клетках гранулезы. 31 В ответ на внутренний стимул на одном полюсе ооцита начинает формироваться полость. Этот процесс, называемый кавитацией или началом образования антрального отдела, характеризуется накоплением жидкости между клетками гранулезы, что со временем приводит к образованию внутренней полости (рис. 16). По завершении кавитации устанавливается основной план графического фолликула, и все различные типы клеток занимают свои надлежащие места в ожидании стимулов, которые будут перемещать их по путям дифференцировки и пролиферации (рис.16). Основываясь на данных о фолликулах полиоцитов, механизм спецификации кавитации, вероятно, строго регулируется (Рис. 17).

Рис. 16. Микрофотография раннего третичного фолликула (диаметром 0,4 мм) при кавитации ранней стадии антрального отдела. ZP, zona pellucida; GC — клетки гранулезы; BL — базальная пластинка; TI, theca interna; TE, theca externa; наконечников стрел, митозов гранулезы (от Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Рис. 17. Микрофотография полиовулярного фолликула на ранней третичной стадии показывает места кавитации или раннего образования антрального отдела ( чистых пространств ) сразу над ооцитами ( звездочка ). Это событие, которое находится под внутриовариальным контролем, по-видимому, возникает особым синхронизированным образом и устанавливает полярность фолликула. ​​(Из Zamboni L: Comparative studies on ultra-structure of the mammaterial oocytes. In Biggers JD and Schultz AW (eds) : Оогенез. Балтимор: University Park Press, 19972.)

Что контролирует кавитацию или раннее образование антрального отдела желудка? Хорошо известно, что кавитация возникает у гипофизэктомированных животных, демонстрируя, что гормоны гипофиза, такие как ФСГ, не требуются для этого морфогенетического события. 32 С этой концепцией согласуется наблюдение, что кавитация возникает у мышей с дефицитом ФСГ-β. 33 , 34 Кажется разумным сделать вывод, что кавитация контролируется аутокринными / паракринными механизмами.В кавитацию вовлечены два фактора роста, экспрессируемые в самом фолликуле: активин и лиганд KIT. Обработка культивированных клеток гранулезы активином вызывает морфогенетические изменения, которые приводят к образованию гистологической единицы с антральной полостью. 35 Блокирование действия лиганда KIT в яичнике предотвращает образование антральных фолликулов; следовательно, овуляции нет, и самка бесплодна. 36 В этом отношении данные подтверждают концепцию, что щелевые соединения ооцитов также важны для кавитации.Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ. 20 , 21 C × 37, по-видимому, представляет собой коннексин, полученный из ооцитов, который образует щелевые соединения между ооцитом и окружающими клетками гранулезы. Данные, полученные на мышах с дефицитом C × 37, приписывают C × 37 обязательную роль в формировании графических фолликулов, овуляции и фертильности. 22 В совокупности все эти данные свидетельствуют о том, что активин, полученный из фолликулов, KIT и C × 37 участвуют в аутокринных / паракринных механизмах, контролирующих кавитацию.

ГРАФИАНСКИЙ ФОЛЛИКЛ.

Графический фолликул можно определить структурно как гетерогенное семейство относительно больших фолликулов (от 0,4 до 23 мм), характеризующихся полостью или антральным отделом, содержащим жидкость, называемую фолликулярной жидкостью или ликворными фолликулами. Характерной структурной единицей всех графиевых фолликулов является антральный отдел.По этой причине термин антральный фолликул правильно используется как синоним графиевого фолликула. Фолликулярная жидкость — это среда, в которой находятся клетки гранулезы и ооцит, и через которую регуляторные молекулы должны проходить на своем пути в эту микросреду и из нее. 37 Удивительно, но мы почти ничего не знаем о физиологическом значении антрального отдела и фолликулярной жидкости в фолликулогенезе. Понятно, что развитие фолликулов и овуляция происходят у птиц и земноводных, несмотря на отсутствие антрального отдела и фолликулярной жидкости.Тем не менее его присутствие у всех видов млекопитающих свидетельствует о его физиологическом значении.

Структура.

Графический фолликул представляет собой трехмерную структуру с центральным антральным отделом, окруженным множеством различных типов клеток (рис. 18). В графовом фолликуле есть шесть различных гистологических компонентов, включая внешнюю, внутреннюю, базальную пластинки, клетки гранулезы, ооцит и фолликулярную жидкость (рис. 18). Графический фолликул не меняет своей морфологической сложности по мере роста.Все графиевые фолликулы имеют одинаковую базовую архитектуру; Несмотря на то, что размер графических фолликулов резко изменился, их внешний вид остается более или менее неизменным.

Рис. 18. Схема архитектуры типичного графического фолликула класса 5. (Из Эриксона GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Broadus AE, Froman LA, (eds) : Эндокринология и метаболизм. 3-е изд. Нью-Йорк: McGraw-Hill, 1987.)

Theca externa (Рис.19) характеризуется наличием гладкомышечных клеток, 38 , 39 , которые иннервируются вегетативными нервами. 27 Хотя физиологическое значение наружной теки остается неясным, есть свидетельства того, что она сокращается во время овуляции и атрезии. 40 , 41 Изменения сократительной активности наружной теки могут быть связаны с атрезией и овуляцией; однако это не было строго доказано. Желтое тело сохраняет внешнюю теку на протяжении всей своей жизни, 42 , но значение при лютеинизации и лютеолизе неизвестно.

Рис. 19. Чертеж стенки графического фолликула. ​​(Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

Theca interna состоит из дифференцированных TIC, расположенных в матрице рыхлой соединительной ткани и кровеносных сосудов (рис. 19). Во всех граафовых фолликулах ЛГ является ключевым регулирующим гормоном функции TIC, и его важность в регулировании продукции андрогенов TIC in vivo и in vitro установлена. 27 Начиная с самых ранних стадий развития графиевых фолликулов, TIC выражают свое дифференцированное состояние в виде андрогенов (, т.е. клеток, продуцирующих андростендион). 27 Внутренняя тека обильно васкуляризирована и служит для доставки гормонов ( например, ФСГ, ЛГ), молекул питательных веществ, витаминов и кофакторов, необходимых для роста и дифференцировки ооцитов и клеток гранулезы.

Нам мало известно о регуляторных элементах, контролирующих сосудистую сеть теки.Функциональная связь между сосудистой сетью и развитием графиевых фолликулов подтверждается свидетельством 43 , что все граафовые фолликулы обезьян экспрессируют высокие уровни рецепторов ФСГ и ЛГ независимо от размера, но при введении 125 I-хорионический гонадотропин человека (ХГЧ) Системно только доминирующий граафовый фолликул, по-видимому, способен накапливать 125 I-ХГЧ в внутренней теке. Эти результаты предполагают, что доминирующий графиевый фолликул выражает повышенную васкуляризацию, которая играет важную роль в его выбранном созревании.В связи с этим интенсивно исследуются фактор роста эндотелия сосудов из фолликулов 44 , 45 и другие ангиогенные факторы, такие как эндотелин 46 .

Компартменты теки (, т.е. theca externa и interna) выражают свои дифференцированные функции в начале развития графического фолликула (при кавитации) и, по-видимому, конститутивно выражают зрелый фенотип на протяжении всей жизни и смерти графического фолликула.В широком смысле существует мало или совсем нет доказательств того, что серьезные изменения происходят в слоях теки на различных стадиях развития графиевых фолликулов, помимо тех, которые связаны с сосудистой и пролиферативной активностью. Это может означать, что именно клетки гранулезы (и, возможно, ооцит) являются вариабельными и, следовательно, ответственными за разнообразие графических фолликулов.

В граафовом фолликуле гранулезные клетки и ооцит существуют как масса точно сформированных и точно расположенных клеток (рис.18). Пространственное изменение создает по крайней мере четыре различных слоя или домена гранулезных клеток: самый внешний домен — это гранулезная мембрана, самый внутренний домен — периантраль, промежуточный домен — кучевой оофорус, а домен, расположенный рядом с ооцитом, — это лучшая корона ( Рис.20). Характерным гистологическим свойством мембранного домена является то, что он состоит из псевдостратифицированного эпителия высоких столбчатых гранулезных клеток, все из которых прикреплены к базальной пластинке.

Рис. 20. Схема структурной и функциональной неоднородности клеток гранулезы в здоровом фолликуле графита. Относительное положение гранулезной клетки в клеточной массе определяет ее способность к пролиферации и дифференцировке (от Erickson GF: Graafian follicle: A function definition. In Adashi EY (ed): Ovulation: Evolving Scientific and Clinical Concepts. New York : Springer-Verlag, 2000.)

Дифференцировку гранулезной клетки можно проследить по ее положению в клеточной массе (рис.20). Например, клетки в домене мембраны прекращают пролиферировать раньше, чем в центральном домене. 47 , 48 Способность клеток гранулезы во внутренних доменах продолжать делиться на протяжении всего развития графиевых фолликулов, предполагает, что они могут быть клетками-предшественниками. Прекращение митоза в домене мембраны характеризуется прогрессирующим выражением явной дифференцировки, при которой они принимают функциональный фенотип полностью дифференцированных клеток. Этот процесс требует временной и координированной экспрессии генов, которые составляют основу цитодифференцировки гранулезы.Механизмы, с помощью которых это происходит, включают лиганд-зависимые сигнальные пути, которые связаны с активацией и ингибированием определенных генов. Например, нормальная дифференцировка клеток гранулезной мембраны требует активации специфических генов, в том числе генов ароматазы цитохрома P450 (P450 arom ) 49 и рецептора LH, 50 и ингибирования структурных генов в пути апоптоза. . Напротив, клетки гранулезы в периантральном, кучевом и лучистом доменах пролиферируют, но не могут экспрессировать гены, участвующие в терминальной дифференцировке (рис.20).

Что контролирует неоднородность гранулезы? Все клетки гранулезы в здоровом фолликуле графита экспрессируют рецептор ФСГ, 13 , 51 , 52 , и было показано, что мышиные гранулезные клетки в мембранных и кучевых доменах продуцируют цАМФ в ответ на стимуляцию ФСГ. . 53 Эти наблюдения доказывают, что пост-цАМФ регуляторные события участвуют в аспектах гетерогенности гранулезы. Идея о том, что ооцит играет ключевую роль в возникновении различных паттернов цитодифференцировки гранулезы во время развития графиевых фолликулов, подтверждается исследованиями на грызунах. 54 Между ооцитом и клетками гранулезы происходит диалог, который оказывает большое влияние на фолликулогенез. В развивающихся граафовых фолликулах мышей дифференциальный паттерн пролиферации и дифференцировки между гранулезой в мембранных и кумулюсных доменах находится под контролем секретируемых морфогенов ооцитов. 54 Новый член семейства TGF-β, GDF-9, был обнаружен у мышей. 24 , 25 Окончательное доказательство того, что GDF-9 является обязательным для фолликулогенеза, было получено в исследованиях на мышах с дефицитом GDF-9. 26 У этих животных отсутствие GDF-9 приводило к остановке роста и развития фолликулов на начальной стадии, и самки бесплодны. Эти данные подтверждают идею о том, что GDF-9, секретируемый яйцеклеткой, является обязательным для развития графиевых фолликулов, цитодифференцировки и пролиферации гранулезных клеток, а также для женской фертильности. Клиническая значимость этой новой концепции демонстрируется наличием мРНК GDF-9 в яичниках человека. 25 Текущие проблемы состоят в выяснении механизмов, контролирующих экспрессию GDF-9, и в идентификации клеток-мишеней для GDF-9 и биологических процессов, которые регулирует GDF-9.Представление о том, что факторы роста ооцитов контролируют фолликулогенез и фертильность, может иметь важные последствия для физиологии и патофизиологии человека.

Классификация.

Все графиовы фолликулы можно условно разделить на две группы: здоровые и атретические (рис. 21). Основное различие между этими двумя группами заключается в том, происходит ли апоптоз в клетках гранулезы. Развитие графиевого фолликула (здорового или атретичного) со временем прогрессирует.Это означает, что вариабельность или гетерогенность являются нормальным следствием фолликулогенеза. Здоровый графиевый фолликул со временем становится все более дифференцированным, пока не достигнет преовуляторной стадии (рис. 22). Время этого процесса (рис. 2) у женщин составляет около 2 месяцев. 3 Когда это происходит, существует временной и пространственный паттерн экспрессии большого количества генов. В здоровых фолликулах эти гены управляют цитодифференцировкой, пролиферацией и образованием фолликулярной жидкости.В атретических фолликулах зависимые от времени изменения экспрессии генов вызывают прекращение митоза и экспрессию апоптоза (, т.е. атрезия фолликула). Во время атрезии ооциты и клетки гранулезы становятся обязанными экспрессировать гены, которые приводят к апоптозу. 55 В здоровых и атретичных графиевых фолликулах механизмы контроля включают лиганд-зависимые сигнальные пути, которые ингибируют или стимулируют экспрессию дифференцировки и апоптоза (рис. 22). Понимание молекулярных механизмов и клеточных последствий сигнальных путей лиганд-рецептор, которые контролируют судьбу граафовых фолликулов, является основной целью репродуктивных исследований.

Рис. 21. Два основных класса графиевых фолликулов: здоровые и атретичные. Каждый из них претерпевает регулируемый курс прогрессивных изменений, которые приводят к овуляции или апоптозу. (Из Эриксона GF: Графиевый фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer- Verlag, 2000.)

Рис. 22. Схема жизненного цикла графиевых фолликулов в яичниках человека.(Из Эриксона Г.Ф.: Графический фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer-Verlag, 2000.)

Процесс образования граафового фолликула рост и развитие можно условно разделить на несколько стадий в зависимости от размера фолликула (рис. 2 и 22). Для клиницистов и исследователей удобно и важно определять физиологические функции различных типов или классов фолликулов в течение всего цикла.У здорового графического фолликула человека есть предназначение завершить переход от малого (от 1 до 6 мм), среднего (от 7 до 11 мм) и большого (от 12 до 17 мм) до полностью дифференцированного преовуляторного состояния (от 18 до 23 мм). . Атретический графиновый фолликул предназначен для завершения перехода от малой к средней стадии (от 1 до 10 мм), но оказывается неспособным вырасти до больших размеров в нормальных физиологических условиях. 56 Поскольку процесс развития графиевых фолликулов является асинхронным, он в любой момент времени производит большую гетерогенную популяцию графических фолликулов в яичниках (рис.3). Каждый из этих морфологически различных графиевых фолликулов представляет собой динамическую структуру, претерпевающую поток или прогрессию изменений в развитии на пути к тому, чтобы стать более дифференцированным или более атретичным (Рис. 22). Следует иметь в виду, что это приводит к наличию крайне неоднородного пула графиевых фолликулов. Это неоднородность, из-за которой трудно прийти к простому функциональному определению графического фолликула.

Размер графического фолликула в значительной степени определяется размером антрального отдела, который определяется объемом фолликулярной жидкости, который определяется биодоступностью ФСГ в жидкости. 57 ФСГ является обязательным для развития графиевых фолликулов, и никакой другой лиганд сам по себе не обладает способностью индуцировать образование фолликулярной жидкости. В отсутствие ФСГ фолликулярная жидкость не образуется, и графитовые фолликулы не развиваются. Разрастание клеток фолликула также способствует росту графиевых фолликулов; В здоровых фолликулах клетки гранулезы и тека сильно разрастаются (в 100 раз), при этом антральный отдел заполняется фолликулярной жидкостью (рис.23). Эти события (, т. Е. увеличенное накопление фолликулярной жидкости и пролиферация клеток) ответственны за огромный рост здоровых граафиевых фолликулов. 3 , 58 Напротив, именно прекращение митоза и образование фолликулярной жидкости определяет размер атретического граафиевого фолликула.

Рис. 23. Изменения количества гранулезных клеток и объема фолликулярной жидкости в граафовых фолликулах человека на протяжении фолликулогенеза.Доминирующий фолликул при овуляции имеет диаметр около 25 мм и содержит около 50 миллионов клеток гранулезы и 7 мл фолликулярной жидкости (из McNatty KP: Гормональные корреляты развития фолликулов в яичнике человека. Aust J Biol Sci 34: 249, 1981. )

Выбор доминантного фолликула.

В каждом менструальном цикле яичники обычно производят единственный доминантный фолликул, который участвует в единственной овуляции. Морфометрический анализ нормальных яичников человека (рис.2 и 3) указывает на то, что доминирующий фолликул, который будет овулировать в последующем цикле, выбран из когорты здоровых фолликулов класса 5 размером 4,7 ± 0,7 мм в диаметре в конце лютеиновой фазы менструального цикла. 1,2,3, 59 Во время отбора фолликул каждой когорты содержит полностью выросший ооцит, около 1 миллиона клеток гранулезы, внутреннюю теку, содержащую несколько слоев TIC, и внешнюю теку, состоящую из гладкомышечных клеток ( Рис.3 и 23).

Характерной чертой доминантного фолликула является высокая скорость митоза в клетках гранулезы.Данные свидетельствуют о том, что вскоре после середины лютеиновой фазы скорость митоза гранулезы резко (примерно в два раза) увеличивается в клетках гранулезы во всех фолликулах когорты. 2 , 56 , 60 Это говорит о том, что лютеолиз может сопровождаться всплеском митоза в гранулезе когорты фолликулов класса 5. Первым признаком того, что был выбран один фолликул, по-видимому, является то, что клетки гранулезы в выбранном фолликуле продолжают делиться с относительно быстрой скоростью, в то время как пролиферация в гранулезе фолликулов другой когорты замедляется.Поскольку это различие становится очевидным в конце лютеиновой фазы, утверждалось, что отбор происходит на поздней лютеиновой фазе менструального цикла. Вследствие увеличения митоза доминантный фолликул продолжает быстро расти 3 , 4 во время фолликулярной фазы, достигая 6,9 ± 0,5 мм в дни с 1 по 5, 13,7 ± 1,2 мм в дни с 6 по 10 и 18,8 ± 0,5 мм на 11-14 дни. И наоборот, рост в фолликулах когорты происходит медленнее, и со временем атрезия становится все более очевидной в фолликулах недоминирующей когорты, предположительно из-за экспрессии специфических генов в апоптотическом пути. 56 Атретический фолликул редко достигает в диаметре более 10 мм, независимо от стадии цикла. 4 , 56 , 60

Процесс.

Имеются убедительные доказательства лабораторных животных 61 и экспериментов на приматах, 62 , что для достижения доминирования фолликула необходимо добиться вторичного повышения уровня ФСГ в плазме. Как показано на рисунке 24, вторичный подъем ФСГ у женщин начинается за несколько дней до того, как уровни прогестерона упадут до базального уровня в конце лютеиновой фазы, а уровни ФСГ остаются повышенными в течение первой недели фолликулярной фазы цикла. 63 Эксперименты на обезьянах продемонстрировали, что доминантный фолликул подвергается атрезии, если вторичное повышение уровня ФСГ предотвращается обработкой экзогенным эстрадиолом. 64 Важной концепцией репродуктивной биологии является то, что повышение биоактивного ФСГ является обязательным для отбора фолликулов и фертильности. 33 , 65 Похоже, что снижение выработки эстрадиола желтым телом является основной причиной вторичного повышения ФСГ 66 , а не падения ингибина А, производного от желтого тела (рис.24).

Рис. 24. Лютеино-фолликулярный переход у женщин. Данные представляют собой средние значения (± SEM) для суточных уровней ингибина A, ингибина B, ФСГ, эстрадиола и прогестерона при лютеин-фолликулярном переходе у женщин с нормальным циклом ( n = 5). Данные сосредоточены на дне менструации во втором цикле. (Из Welt CK, Martin KA, Taylor AE et al: Частотная модуляция фолликулостимулирующего гормона (ФСГ) во время лютеин-фолликулярного перехода: Доказательства контроля ФСГ ингибина B в нормальные женщины.J Clin Endocrinol Metab 82: 2645, 1997, с разрешения Общества эндокринологов.)

Как происходит вторичный рост выбора контроля ФСГ? Результаты исследований фолликулярной жидкости человека подтверждают вывод о том, что повышение уровня ФСГ в плазме приводит к прогрессивному накоплению относительно высоких концентраций ФСГ в микросреде одного фолликула в когорте; этому фолликулу суждено стать доминирующим (рис. 25). При развитии здоровых (доминантных) фолликулов (фолликулы классов 5-8) средняя концентрация ФСГ в фолликулярной жидкости увеличивается примерно с 1.От 3 мМЕ / мл (около 58 нг / мл) до около 3,2 мМЕ / мл (около 143 нг / мл) через фолликулярную фазу. 4 , 67 Напротив, 4 , 67 уровни ФСГ низкие или неопределяемые в микросреде недоминирующих когортных фолликулов (рис. 25).

Рис. 25. Иллюстрация концепции, согласно которой доминантный фолликул содержит относительно высокие уровни фолликулостимулирующего гормона (ФСГ) в фолликулярной жидкости, тогда как уровни ФСГ низкие или неопределяемые в когортных фолликулах, предназначенных для атрезии. A. В доминантных фолликулах ФСГ в фолликулярной жидкости индуцирует активность P450 arom , которая метаболизирует андрогенный субстрат до эстрадиола (E 2 ). В таких фолликулах E 2 и андростендион (A 4 ) накапливаются в фолликулярной жидкости в очень высоких концентрациях. B. В недоминантных фолликулах низкие уровни ФСГ приводят к недостатку гранулезных клеток (GC) и низким концентрациям эстрадиола, несмотря на высокие уровни A 4 .(Из Erickson GF, Yen SSC: Новые данные о фолликулярных клетках в поликистозных яичниках: предлагаемый механизм возникновения кистозных фолликулов. Semin Reprod Endocrinol 2: 231, 1984.)

Поступление ФСГ в фолликулярную жидкость в Считается, что кавитация обеспечивает индукционный стимул, который запускает процесс роста и развития графитовых фолликулов. На клеточном уровне именно рецептор ФСГ на клетке гранулезы является основным игроком в этом процессе. Когда соответствующий высокий порог ФСГ достигается в одном графовом фолликуле, он становится доминирующим. 31 Напротив, маленькие графиевые фолликулы в когорте с подпороговыми уровнями ФСГ становятся недоминантными (рис. 22 и 25). Механизм, с помощью которого один маленький графовый фолликул в когорте способен концентрировать высокие уровни ФСГ в своем микроокружении, остается одной из загадок физиологии яичников. Важным моментом является то, что эстрадиол, продуцируемый доминантным фолликулом, ингибирует вторичный рост ФСГ по механизму отрицательной обратной связи (рис. 24 и 26). Считается, что это обеспечивает подпороговый уровень ФСГ в фолликулах недоминантной когорты, что затем приводит к атрезии.Митоз в клетках гранулезы фолликулов атретической когорты можно стимулировать путем лечения менопаузальным гонадотропином человека (чМГ) на ранней фолликулярной фазе. 59 Если уровни ФСГ повышены до пороговых уровней в микросреде, то недоминантные фолликулы могут быть спасены от атрезии. Этот феномен может иметь значение для способа, которым экзогенный ФСГ или чМГ запускает образование множественных доминантных фолликулов у женщин, подвергающихся индукции овуляции.

Рис.26. Диаграмма, иллюстрирующая важные последствия повышения уровня фолликулостимулирующего гормона (ФСГ) в ранней фолликулярной фазе менструального цикла человека на рост и развитие доминирующего фолликула.

Рост и развитие фолликулов | GLOWM

Фолликулогенез — это процесс, при котором рекрутированный примордиальный фолликул растет и развивается в специализированный графиевый фолликул, способный либо овулировать свою яйцеклетку в яйцевод в середине цикла для оплодотворения, либо умереть от атрезии.У женщин этот процесс длится долго, требуется почти 1 год для роста примордиального фолликула и его развития до стадии овуляции. В ходе фолликулогенеза рост достигается за счет пролиферации клеток и образования фолликулярной жидкости, тогда как развитие включает цитодифференцировку всех клеток и тканей в фолликуле. Только несколько фолликулов в яичниках человека выживают, чтобы завершить процесс цитодифференцировки, причем 99,9% из них умирают в результате запрограммированного механизма гибели клеток, называемого апоптозом.

Механизмы, регулирующие рост и развитие фолликулов, находятся под контролем изменяющихся концентраций лигандов ( i.е. гормонов и факторов роста). На эндокринном уровне фолликулогенез регулируется каскадным механизмом центральной нервной системы, передней доли гипофиза и яичников. Специализированные нейроны гипоталамуса выделяют импульсы гонадотропин-рилизинг-гормона (ГнРГ) в портальные кровеносные сосуды, которые действуют на гонадотрофов, вызывая пульсирующее высвобождение фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ), которые действуют на клетки фолликулов яичников. для контроля фолликулогенеза. Хотя ГнРГ, ФСГ и ЛГ критически важны в регуляции фолликулогенеза, гормоны и факторы роста, которые сами являются продуктами фолликула, могут действовать локально, модулируя (усиливая или ослабляя) действие ФСГ и ЛГ.Это аутокринная / паракринная система развивающихся фолликулов. Считается, что эта местная регуляторная система играет важную роль в сложных механизмах, управляющих временем фолликулогенеза и становится ли фолликул доминирующим или атретическим.

Хронология

Шаги и время фолликулогенеза человека показаны на рис. 2. У женщин фолликулогенез — длительный процесс. 1,2,3 В каждом менструальном цикле доминирующий фолликул, который овулирует своей яйцеклеткой, происходит из примордиального фолликула, который был задействован для инициирования роста почти на год раньше (рис.2). В широком смысле существует два типа фолликулов (рис. 2): преантральных (примордиальные, первичные, вторичные [класс 1], третичные [класс 2]) и антральных (графиальные, маленькие [класс 3, 4]. , 5], средний [6 класс], большой [7 класс], преовуляторный [8 класс]). Развитие преантральных и антральных фолликулов не зависит от гонадотропина и зависит от гонадотропина соответственно.

Рис. 2. Хронология фолликулогенеза в яичниках человека. Обратите внимание на временную шкалу на периферии. Преантральный период: Требуется 300 дней для рекрутированного зачатка, чтобы вырасти и развиться до стадии класса 2/3 (0,4 мм) или стадии кавитации (ранний антральный отдел). Атрезия может возникать в преантральных фолликулах 1, 2 и 3 класса. Антральный период: Фолликулу класса 4 (1-2 мм), если он выбран, требуется около 50 дней для роста и развития до преовуляторной стадии. Доминирующий фолликул цикла, по-видимому, выбран из когорты фолликулов класса 5, и ему требуется около 20 дней для развития до стадии овуляции.Атрезия часто встречается в антральном периоде. gc — количество гранулезных клеток; d, дни. (Из Gougeon A: Динамика роста фолликулов у человека: Модель на основе предварительных результатов. Hum Reprod 1:81, 1986.)

Скорость развития преантральных фолликулов медленная, требуется около 300 дней. для задействованного примордиального фолликула для завершения всего преантрального периода (рис. 2). Длительное время удвоения (около 10 дней) клеток гранулезы отвечает за медленную скорость роста. После образования антрального отдела в фолликуле 3 класса (около 0.4 мм) скорость роста увеличивается (рис. 2). Промежуток времени между формированием антрального отдела и развитием 20-миллиметрового преовуляторного фолликула составляет около 50 дней (рис. 2). Доминантный фолликул, по-видимому, выбран из когорты фолликулов класса 5 в конце лютеиновой фазы менструального цикла. 1,2,3,4 Для роста доминантного фолликула и его развития до преовуляторной стадии требуется от 15 до 20 дней (рис. 2). Атрезия может возникать во всех фолликулах (преантральном и антральном) после стадии фолликула класса 1 или вторичной; однако наибольшая частота встречаемости наблюдается в антральных фолликулах диаметром более 2 мм ( i.е. класс 5, 6 и 7) (рис.2).

Процесс

Фолликулогенез происходит в коре яичника (рис. 3). Фолликулы в коре головного мозга представлены в широком диапазоне размеров, представляющих различные стадии фолликулогенеза. Целью фолликулогенеза является создание единственного доминантного фолликула из пула растущих фолликулов. В этот процесс вовлечены четыре основных регуляторных события: рекрутирование, преантральное развитие фолликула, отбор и атрезия.

Рис.3. Микрофотография яичника взрослого примата. Фолликулярные и лютеиновые единицы видны в коре головного мозга, а крупные кровеносные сосуды и нервы — в продолговатом мозге. se, серозный или поверхностный эпителий; ta, tunica albuginea; pf — первичный фолликул; sf, вторичный фолликул; tf, третичный фолликул; gf, графиевый фолликул. (Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

ИСКОННЫЙ ФОЛЛИКЛ.

Все примордиальные фолликулы состоят из небольшого первичного ооцита (около 25 мкм в диаметре), задержанного на стадии диплотены (или диктиата) мейоза, одного слоя уплощенных (плоских) клеток гранулезы и базальной пластинки (рис.4). Средний диаметр примордиального фолликула человека составляет 29 мкм. 5 Благодаря базальной пластинке гранулеза и ооцит существуют в микроокружении, в котором не происходит прямого контакта с другими клетками. Примордиальные фолликулы не имеют самостоятельного кровоснабжения. 6 Следовательно, примордиальные фолликулы имеют ограниченный доступ к эндокринной системе.

Рис. 4. Электронная микрофотография первичного фолликула человека показывает уплощенные клетки гранулезы (GC), ооцит с его зародышевым пузырьком (GV) или ядром, тельце Balbiani (BB), со всеми собранными органеллами ооцита. у одного полюса GV и базальной пластинки (BL).(Из Эриксона Г.Ф.: Яичник: Основные принципы и концепции. В Фелиг П., Бакстер Дж. Д., Фроман Л. (ред.): Эндокринология и метаболизм. Нью-Йорк: МакГроу-Хилл, 1995.)

Набор персонала.

Первым важным событием в фолликулогенезе является набор. Вербовка — это процесс, при котором заблокированный примордиальный фолликул запускается, чтобы возобновить развитие и войти в пул растущих фолликулов. Все примордиальные фолликулы (ооциты), присутствующие в яичниках человека, образуются у плода между шестым и девятым месяцем беременности.Поскольку весь запас ооцитов в примордиальных фолликулах находится в профазе мейоза, ни один из них не способен к митотическому делению. Все ооциты (примордиальные фолликулы), способные участвовать в воспроизводстве в течение жизни женщины, присутствуют в яичниках при рождении (рис. 5). Общее количество примордиальных фолликулов в яичниках в любой момент времени называется резервом яичников (OR). 7 Процесс набора начинается вскоре после образования примордиальных фолликулов у плода, 8 и продолжается на протяжении всей жизни женщины до тех пор, пока пул примордиальных фолликулов не истощится в период менопаузы (рис.5). При старении наблюдается двухэкспоненциальное уменьшение OR 7 , 9 , 10 (рис. 6). Число примордиальных фолликулов неуклонно падает на протяжении более трех десятилетий, но когда OR достигает критического числа около 25000 в возрасте 37,5 ± 1,2 года, скорость потери примордиальных фолликулов увеличивается примерно в два раза (рис. 6). Это изменение OR связано с возрастным снижением плодовитости, что, возможно, является причиной возрастного увеличения ФСГ у женщин после 36 лет. 7

Рис. 5. Возрастные изменения количества примордиальных фолликулов (ооцитов) в яичниках человека. Левая панель: Количество яиц уменьшается от 6 месяцев беременности до 50 лет. (От Baker TG: Радиочувствительность ооцитов млекопитающих с особым упором на самку человека. Am J Obstet Gynecol 110: 746, 1971.) Правая панель: Микрофотографии, иллюстрирующие возрастное уменьшение примордиальных фолликулов ( стрелки, ) у человека. яичники.(Из Эриксона GF: Анализ развития фолликулов и созревания яйцеклетки. Semin Reprod Endocrinol 4: 233, 1986.)

Рис. 6. Связанное с возрастом уменьшение количества примордиальных фолликулов (PF) внутри оба яичника человека от рождения до менопаузы. В результате набора численность PF постепенно уменьшается с примерно 1 000 000 при рождении до примерно 24 000 в 37 лет. К 37 годам скорость набора увеличивается примерно вдвое, а количество PF снижается примерно до 1000 через 51 год ( i.е. — средний возраст начала менопаузы) (от Faddy MJ, Gosden RG, Gougeon A et al: Ускоренное исчезновение фолликулов яичников в среднем возрасте: значение для прогнозирования менопаузы. Hum Reprod 7: 1342, 1992.)

Механизм.

Первый видимый признак (рис. 7) рекрутирования примордиального фолликула — это то, что некоторые клетки гранулезы начинают менять плоскую форму на кубовидную. 5 Первая кубовидная клетка видна, когда примордиальный фолликул содержит 8 клеток гранулезы, и процесс завершается, когда число гранулез достигает 19 (рис.8). За изменением формы следует начало, хотя и медленное, синтеза ДНК и митоза в клетках гранулезы. 8 Изменение формы и приобретение митотического потенциала в клетках гранулезы являются отличительными признаками набора. Такие наблюдения предполагают, что механизмы, управляющие рекрутированием, могут включать регуляторный ответ на уровне клеток гранулезы. Рекрутмент не зависит от гипофиза и, вероятно, контролируется аутокринными / паракринными механизмами. Неизвестно, вызывает ли это стимулятор или потеря ингибитора; однако примордиальные фолликулы подвергаются быстрому рекрутированию при удалении из яичника и культивировании in vitro. 11 Эти наблюдения подтверждают идею ингибитора.

Рис. 7. Микрофотография нерастущего примордиального и вновь набранного (растущего) фолликула в яичнике человека. Обратите внимание на кубовидные клетки гранулезы ( стрелок, ) во вновь набранном примордиальном фолликуле.

Рис. 8. Связь между числом гранулез в наибольшем поперечном сечении фолликула и распределением уплощенных и кубовидных клеток.(Из Gougeon A, Chainy GBN: Морфометрические исследования мелких фолликулов в яичниках женщин в разном возрасте. J Reprod Fertil 81: 433, 1987.)

Для объяснения механизма рекрутирования было выдвинуто несколько различных гипотез. Во-первых, этот процесс, по-видимому, происходит в примордиальных фолликулах, ближайших к мозговому веществу, где видны кровеносные сосуды. Это подтверждает гипотезу о том, что воздействие питательных веществ или переносимых с кровью регуляторных молекул может играть роль в контроле рекрутирования.Во-вторых, был предложен механизм внутренних часов ооцитов для контроля рекрутирования. 12 В этой гипотезе часы связаны со временем, когда ооцит инициирует мейоз у эмбриона. Примечательно, что набор можно модулировать. 8 У грызунов скорость рекрутирования может быть снижена путем удаления вилочковой железы новорожденного, голодания или обработки экзогенными опиоидными пептидами. Это важные наблюдения, потому что они утверждают, что пути передачи сигналов лиганд-рецептор могут регулировать рекрутирование.Понимание регуляторных механизмов, лежащих в основе рекрутирования, остается важной задачей репродуктивной биологии.

ПРЕАНТРАЛЬНАЯ ФОЛЛИКЛА.

Ранние стадии фолликулогенеза можно разделить на три класса в зависимости от количества слоев клеток гранулезы, развития ткани теки и экспрессии небольшой полости или антрального отдела. Классы — первичные, вторичные и ранние третичные фолликулы (рис. 9). По мере увеличения морфологической сложности в фолликуле происходят важные клеточные и физиологические изменения, которые делают его способным реагировать на гонадотропины.В следующих разделах исследуются структурные и функциональные изменения, сопровождающие рост и развитие преантральных фолликулов.

Рис. 9. Диаграмма, показывающая размер и гистологическую организацию ранних развивающихся фолликулов человека во время гонадотропин-независимого периода фолликулогенеза. (Эриксон GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Frohman L (eds): Endocrinology and Metabolism. New York: McGraw-Hill, 1995.)

Первичный фолликул.

Первичный фолликул состоит из одной или нескольких кубовидных гранулезных клеток, которые расположены в одном слое, окружающем ооцит (рис. 10). Одновременно с изменением формы и митотической активностью, которые сопровождают рекрутинг (рис. 7 и 10), клетки кубовидной гранулезы начинают экспрессировать рецепторы ФСГ. 13 , 14 Механизм, лежащий в основе этого критического события в фолликулогенезе, остается неясным, но есть доказательства у грызунов 15 , что активин, полученный из гранулезы, может играть важную роль в экспрессии рецептора ФСГ посредством аутокринных / паракринных механизмов. (Рис.11). Хотя клетки гранулезы экспрессируют рецепторы ФСГ на этой очень ранней стадии фолликулогенеза, считается, что физиологические уровни ФСГ в плазме во время нормального менструального цикла не влияют на реакции гранулезы, поскольку первичные фолликулы не имеют независимой сосудистой системы. Тем не менее, поскольку поблизости находятся кровеносные сосуды (рис. 10), ФСГ-индуцированные изменения функции первичных фолликулов могут происходить в ответ на аномально высокие уровни ФСГ в плазме, такие как те, которые возникают во время индукции овуляции или старения.

Рис. 10. Рисунок развивающегося первичного фолликула, встроенного в соединительную ткань или строму коры яичника. Ядрышко и мейотические хромосомы очевидны в ядре ооцита. Митохондрии агрегированы на одном полюсе ядра ооцита (, т. Е. тельца Балбинни). Всего видно 19 кубовидных гранулезных клеток, одна из которых дает начало второму слою клеток (From Bloom W, Fawcett DW: A Textbook of Histology. Philadelphia: WB Saunders, 1975.)

Рис. 11. Схема предлагаемого механизма аутокринного контроля экспрессии рецепторов фолликулостимулирующего гормона в гранулезных клетках преантральных фолликулов. (Из Эриксона GF: Диссоциация эндокринной и гаметогенной функции яичников. Lobo R (ed): Perimenopause New York: Springer-Verlag, 1997.)

Начиная примерно с момента рекрутирования ооцит начинает расти и дифференцироваться.Этот период отмечен прогрессивным увеличением уровня синтеза РНК ооцитов. 16 В это время включен ряд важных генов ооцитов. Например, гены, кодирующие белки zona pellucida (ZP) (, т.е. ZP-1, ZP-2 и ZP-3), транскрибируются и транслируются. 17 Секретируемые белки ZP начинают полимеризоваться вблизи поверхности ооцита, образуя оболочку внеклеточного матрикса (пеллюцидную оболочку), которая в конечном итоге инкапсулирует яйцеклетку. Важность блестящей оболочки подчеркивается тем фактом, что углеводная часть ZP-3 представляет собой видоспецифичную молекулу, связывающую сперматозоиды. 18 Он отвечает за инициирование акросомной реакции в конденсированных сперматозоидах. 19

Во время развития первичного фолликула клетки гранулезы отправляют процессы через слой зоны, где они образуют щелевые соединения с клеточной мембраной ооцита или оолемме (Рис. 12). Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ и кальций. 20 , 21 Коннексин 37 (C × 37) представляет собой коннексин, полученный из ооцитов, который образует щелевые контакты между ооцитом и окружающими клетками гранулезы. 22 Данные, полученные от мышей с дефицитом C × 37, приписывают C × 37 обязательную роль в фолликулогенезе, овуляции и фертильности. 22 Большие щелевые соединения также присутствуют между самими клетками гранулезы (Рис. 12). C × 43 является основным белком щелевого соединения, экспрессируемым в клетках гранулезы. 23 В результате щелевых контактов первичный фолликул становится метаболически и электрически связанной единицей.Эта связь между гранулезой и ооцитом сохраняется на протяжении всего фолликулогенеза и отвечает за синхронное проявление важных активностей (положительных и отрицательных).

Рис. 12. Электронная микрофотография гранулезных клеток короны радиата ооцита в преантральном фолликуле. Отростки гранулезных клеток, пересекающие блестящую оболочку (ZP), образуют небольшие щелевые соединения ( стрелок, ) с плазматической мембраной ооцита. Между ячейками corona radiata видны более крупные щелевые соединения ( стрелки ).(Гилула Н.Б., Эпштейн М.Л., Бирс WH: Межклеточная коммуникация и овуляция: исследование комплекса кумулюс-ооцит. J Cell Biol 78:58, 1978, воспроизведено с разрешения Rockefeller University Press.)

Вторичный фолликул.

Вторичный фолликул — это преантральный фолликул с 2-10 слоями кубовидных или низко столбчатых клеток, которые образуют многослойный эпителий (рис. 13). Как видно на рисунке 10, переход от первичного ко вторичному фолликулу включает приобретение второго слоя клеток гранулезы.Этот переход осуществляется продолжающимся делением клеток гранулезы. Механизмы, регулирующие митоз гранулезы, плохо изучены. Однако захватывающие исследования на грызунах предоставили убедительные доказательства участия производного ооцитами фактора роста, называемого фактором дифференцировки роста-9 (GDF-9). GDF-9 является новым членом суперсемейства трансформирующих факторов роста β (TGF-β). 24 GDF-9 сильно экспрессируется в яичнике; локализуется только в ооцитах рекрутированных фолликулов. 25 У мышей с дефицитом GDF-9 рост и развитие фолликулов останавливаются на начальной стадии; следовательно, доминантные фолликулы не образуются, и самки бесплодны. 26 Соответственно, GDF-9 является обязательным для фолликулогенеза после первичной стадии, предположительно потому, что он является обязательным митогеном для клеток гранулезы. Фундаментальная концепция, вытекающая из этой работы, заключается в том, что ооцит играет ключевую роль в регуляции фолликулогенеза благодаря своей способности продуцировать новые регуляторные лиганды ( e.г. GDF-9), которые имеют решающее значение для фолликулогенеза.

Рис. 13. Типичный здоровый вторичный фолликул содержит полностью выросший ооцит, окруженный блестящей оболочкой, пять-восемь слоев гранулезных клеток, базальную пластинку и развивающуюся ткань теки с многочисленными кровеносными сосудами. (From Bloom W. , Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Одним из наиболее важных изменений, которые происходят в развитии вторичного фолликула, является приобретение слой тека.Эта ткань, которая состоит из слоя стромоподобных клеток вокруг базальной пластинки, впоследствии дифференцируется на внутреннюю и внешнюю теку (рис. 13). Развитие Theca сопровождается новообразованием множества мелких сосудов, предположительно за счет ангиогенеза (Fig. 13). Это критическое событие, потому что кровь циркулирует вокруг фолликула, доставляя питательные вещества и гормоны (, например, ФСГ, ЛГ) во вторичный фолликул, а также отходы и секреторные продукты. В связи с этим некоторые стромальные клетки внутреннего слоя экспрессируют рецепторы ЛГ. 27 Эти клетки впоследствии дифференцируются в стероидогенные клетки, называемые интерстициальными клетками теки (ТИК), наиболее вероятно в ответ на плазменный ЛГ, доставляемый сосудистой системой теки. 27 Все клетки гранулезы вторичных фолликулов экспрессируют рецепторы ФСГ. 13 Кажется вероятным, что диффузия плазменного ФСГ во вторичный фолликул может вызывать ФСГ-зависимые гранулезные ответы. Внешний слой клеток стромы впоследствии дифференцируется в клетки гладкой мускулатуры, называемые внешней текой.Эти гладкомышечные клетки иннервируются вегетативной нервной системой. 27

Во вторичном фолликуле ооцит завершает свой рост. Когда диаметр фолликула составляет около 200 мкм, ооцит достигает максимального размера и больше не растет, несмотря на то, что человеческий фолликул увеличивается в диаметре до 2 см и более (рис. 14). У грызунов хорошо известно, что клетки гранулезы играют обязательную роль в росте и дифференцировке ооцита. 28 , 29 Важным событием дифференциации, которое происходит, когда ооцит завершает свой рост, является приобретение способности возобновлять мейоз. 30 Ооциты обычно не возобновляют мейоз во время фолликулогенеза, и должен действовать механизм, ингибирующий этот процесс ( т.е. распад зародышевых пузырьков [GVBD]) и возобновление мейоза. Основной механизм торможения остается неизвестным; однако есть данные, подтверждающие концепцию, что цАМФ, полученный из гранулезы, может играть важную роль в ингибировании возобновления мейоза. 30 По такому механизму ФСГ индуцирует цАМФ в клетках гранулезы, который диффундирует в ооцит через щелевое соединение C × 37, где он продолжает ингибировать GVBD (рис.15).

Рис. 14. Диаграмма, показывающая соотношение между размером ооцита и размером фолликулов в яичнике младенца человека (от Мандл AM, Zuckerman S: Рост ооцита и фолликула у взрослой крысы .J Endocrinol 8: 126, 1952, воспроизведено с разрешения Общества эндокринологов.)

Рис. ГВБД) или возобновление меоизиса.Передача сигнала рецептора фолликулостимулирующего гормона (ФСГ) в клетках гранулезы приводит к увеличению продукции цАМФ. ЦАМФ может диффундировать через щелевые соединения гранулоза-ооцит коннексин-37 (C × 37), где он накапливается в больших количествах в ооплазме, чтобы ингибировать распад (BD) зародышевых пузырьков (GV) (, т.е. ингибирует возобновление мейоза или GVBD).

Третичный фолликул.

Когда преантральный фолликул завершает вторичную стадию развития, он содержит пять различных структурных единиц: полностью выросший ооцит, окруженный блестящей оболочкой, от шести до девяти слоев клеток гранулезы, базальную пластинку, внутреннюю и внешнюю теки. (Рис.13). Первым признаком начала развития третичного фолликула является появление полости в клетках гранулезы. 31 В ответ на внутренний стимул на одном полюсе ооцита начинает формироваться полость. Этот процесс, называемый кавитацией или началом образования антрального отдела, характеризуется накоплением жидкости между клетками гранулезы, что со временем приводит к образованию внутренней полости (рис. 16). По завершении кавитации устанавливается основной план графического фолликула, и все различные типы клеток занимают свои надлежащие места в ожидании стимулов, которые будут перемещать их по путям дифференцировки и пролиферации (рис.16). Основываясь на данных о фолликулах полиоцитов, механизм спецификации кавитации, вероятно, строго регулируется (Рис. 17).

Рис. 16. Микрофотография раннего третичного фолликула (диаметром 0,4 мм) при кавитации ранней стадии антрального отдела. ZP, zona pellucida; GC — клетки гранулезы; BL — базальная пластинка; TI, theca interna; TE, theca externa; наконечников стрел, митозов гранулезы (от Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Рис. 17. Микрофотография полиовулярного фолликула на ранней третичной стадии показывает места кавитации или раннего образования антрального отдела ( чистых пространств ) сразу над ооцитами ( звездочка ). Это событие, которое находится под внутриовариальным контролем, по-видимому, возникает особым синхронизированным образом и устанавливает полярность фолликула. ​​(Из Zamboni L: Comparative studies on ultra-structure of the mammaterial oocytes. In Biggers JD and Schultz AW (eds) : Оогенез. Балтимор: University Park Press, 19972.)

Что контролирует кавитацию или раннее образование антрального отдела желудка? Хорошо известно, что кавитация возникает у гипофизэктомированных животных, демонстрируя, что гормоны гипофиза, такие как ФСГ, не требуются для этого морфогенетического события. 32 С этой концепцией согласуется наблюдение, что кавитация возникает у мышей с дефицитом ФСГ-β. 33 , 34 Кажется разумным сделать вывод, что кавитация контролируется аутокринными / паракринными механизмами.В кавитацию вовлечены два фактора роста, экспрессируемые в самом фолликуле: активин и лиганд KIT. Обработка культивированных клеток гранулезы активином вызывает морфогенетические изменения, которые приводят к образованию гистологической единицы с антральной полостью. 35 Блокирование действия лиганда KIT в яичнике предотвращает образование антральных фолликулов; следовательно, овуляции нет, и самка бесплодна. 36 В этом отношении данные подтверждают концепцию, что щелевые соединения ооцитов также важны для кавитации.Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ. 20 , 21 C × 37, по-видимому, представляет собой коннексин, полученный из ооцитов, который образует щелевые соединения между ооцитом и окружающими клетками гранулезы. Данные, полученные на мышах с дефицитом C × 37, приписывают C × 37 обязательную роль в формировании графических фолликулов, овуляции и фертильности. 22 В совокупности все эти данные свидетельствуют о том, что активин, полученный из фолликулов, KIT и C × 37 участвуют в аутокринных / паракринных механизмах, контролирующих кавитацию.

ГРАФИАНСКИЙ ФОЛЛИКЛ.

Графический фолликул можно определить структурно как гетерогенное семейство относительно больших фолликулов (от 0,4 до 23 мм), характеризующихся полостью или антральным отделом, содержащим жидкость, называемую фолликулярной жидкостью или ликворными фолликулами. Характерной структурной единицей всех графиевых фолликулов является антральный отдел.По этой причине термин антральный фолликул правильно используется как синоним графиевого фолликула. Фолликулярная жидкость — это среда, в которой находятся клетки гранулезы и ооцит, и через которую регуляторные молекулы должны проходить на своем пути в эту микросреду и из нее. 37 Удивительно, но мы почти ничего не знаем о физиологическом значении антрального отдела и фолликулярной жидкости в фолликулогенезе. Понятно, что развитие фолликулов и овуляция происходят у птиц и земноводных, несмотря на отсутствие антрального отдела и фолликулярной жидкости.Тем не менее его присутствие у всех видов млекопитающих свидетельствует о его физиологическом значении.

Структура.

Графический фолликул представляет собой трехмерную структуру с центральным антральным отделом, окруженным множеством различных типов клеток (рис. 18). В графовом фолликуле есть шесть различных гистологических компонентов, включая внешнюю, внутреннюю, базальную пластинки, клетки гранулезы, ооцит и фолликулярную жидкость (рис. 18). Графический фолликул не меняет своей морфологической сложности по мере роста.Все графиевые фолликулы имеют одинаковую базовую архитектуру; Несмотря на то, что размер графических фолликулов резко изменился, их внешний вид остается более или менее неизменным.

Рис. 18. Схема архитектуры типичного графического фолликула класса 5. (Из Эриксона GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Broadus AE, Froman LA, (eds) : Эндокринология и метаболизм. 3-е изд. Нью-Йорк: McGraw-Hill, 1987.)

Theca externa (Рис.19) характеризуется наличием гладкомышечных клеток, 38 , 39 , которые иннервируются вегетативными нервами. 27 Хотя физиологическое значение наружной теки остается неясным, есть свидетельства того, что она сокращается во время овуляции и атрезии. 40 , 41 Изменения сократительной активности наружной теки могут быть связаны с атрезией и овуляцией; однако это не было строго доказано. Желтое тело сохраняет внешнюю теку на протяжении всей своей жизни, 42 , но значение при лютеинизации и лютеолизе неизвестно.

Рис. 19. Чертеж стенки графического фолликула. ​​(Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

Theca interna состоит из дифференцированных TIC, расположенных в матрице рыхлой соединительной ткани и кровеносных сосудов (рис. 19). Во всех граафовых фолликулах ЛГ является ключевым регулирующим гормоном функции TIC, и его важность в регулировании продукции андрогенов TIC in vivo и in vitro установлена. 27 Начиная с самых ранних стадий развития графиевых фолликулов, TIC выражают свое дифференцированное состояние в виде андрогенов (, т.е. клеток, продуцирующих андростендион). 27 Внутренняя тека обильно васкуляризирована и служит для доставки гормонов ( например, ФСГ, ЛГ), молекул питательных веществ, витаминов и кофакторов, необходимых для роста и дифференцировки ооцитов и клеток гранулезы.

Нам мало известно о регуляторных элементах, контролирующих сосудистую сеть теки.Функциональная связь между сосудистой сетью и развитием графиевых фолликулов подтверждается свидетельством 43 , что все граафовые фолликулы обезьян экспрессируют высокие уровни рецепторов ФСГ и ЛГ независимо от размера, но при введении 125 I-хорионический гонадотропин человека (ХГЧ) Системно только доминирующий граафовый фолликул, по-видимому, способен накапливать 125 I-ХГЧ в внутренней теке. Эти результаты предполагают, что доминирующий графиевый фолликул выражает повышенную васкуляризацию, которая играет важную роль в его выбранном созревании.В связи с этим интенсивно исследуются фактор роста эндотелия сосудов из фолликулов 44 , 45 и другие ангиогенные факторы, такие как эндотелин 46 .

Компартменты теки (, т.е. theca externa и interna) выражают свои дифференцированные функции в начале развития графического фолликула (при кавитации) и, по-видимому, конститутивно выражают зрелый фенотип на протяжении всей жизни и смерти графического фолликула.В широком смысле существует мало или совсем нет доказательств того, что серьезные изменения происходят в слоях теки на различных стадиях развития графиевых фолликулов, помимо тех, которые связаны с сосудистой и пролиферативной активностью. Это может означать, что именно клетки гранулезы (и, возможно, ооцит) являются вариабельными и, следовательно, ответственными за разнообразие графических фолликулов.

В граафовом фолликуле гранулезные клетки и ооцит существуют как масса точно сформированных и точно расположенных клеток (рис.18). Пространственное изменение создает по крайней мере четыре различных слоя или домена гранулезных клеток: самый внешний домен — это гранулезная мембрана, самый внутренний домен — периантраль, промежуточный домен — кучевой оофорус, а домен, расположенный рядом с ооцитом, — это лучшая корона ( Рис.20). Характерным гистологическим свойством мембранного домена является то, что он состоит из псевдостратифицированного эпителия высоких столбчатых гранулезных клеток, все из которых прикреплены к базальной пластинке.

Рис. 20. Схема структурной и функциональной неоднородности клеток гранулезы в здоровом фолликуле графита. Относительное положение гранулезной клетки в клеточной массе определяет ее способность к пролиферации и дифференцировке (от Erickson GF: Graafian follicle: A function definition. In Adashi EY (ed): Ovulation: Evolving Scientific and Clinical Concepts. New York : Springer-Verlag, 2000.)

Дифференцировку гранулезной клетки можно проследить по ее положению в клеточной массе (рис.20). Например, клетки в домене мембраны прекращают пролиферировать раньше, чем в центральном домене. 47 , 48 Способность клеток гранулезы во внутренних доменах продолжать делиться на протяжении всего развития графиевых фолликулов, предполагает, что они могут быть клетками-предшественниками. Прекращение митоза в домене мембраны характеризуется прогрессирующим выражением явной дифференцировки, при которой они принимают функциональный фенотип полностью дифференцированных клеток. Этот процесс требует временной и координированной экспрессии генов, которые составляют основу цитодифференцировки гранулезы.Механизмы, с помощью которых это происходит, включают лиганд-зависимые сигнальные пути, которые связаны с активацией и ингибированием определенных генов. Например, нормальная дифференцировка клеток гранулезной мембраны требует активации специфических генов, в том числе генов ароматазы цитохрома P450 (P450 arom ) 49 и рецептора LH, 50 и ингибирования структурных генов в пути апоптоза. . Напротив, клетки гранулезы в периантральном, кучевом и лучистом доменах пролиферируют, но не могут экспрессировать гены, участвующие в терминальной дифференцировке (рис.20).

Что контролирует неоднородность гранулезы? Все клетки гранулезы в здоровом фолликуле графита экспрессируют рецептор ФСГ, 13 , 51 , 52 , и было показано, что мышиные гранулезные клетки в мембранных и кучевых доменах продуцируют цАМФ в ответ на стимуляцию ФСГ. . 53 Эти наблюдения доказывают, что пост-цАМФ регуляторные события участвуют в аспектах гетерогенности гранулезы. Идея о том, что ооцит играет ключевую роль в возникновении различных паттернов цитодифференцировки гранулезы во время развития графиевых фолликулов, подтверждается исследованиями на грызунах. 54 Между ооцитом и клетками гранулезы происходит диалог, который оказывает большое влияние на фолликулогенез. В развивающихся граафовых фолликулах мышей дифференциальный паттерн пролиферации и дифференцировки между гранулезой в мембранных и кумулюсных доменах находится под контролем секретируемых морфогенов ооцитов. 54 Новый член семейства TGF-β, GDF-9, был обнаружен у мышей. 24 , 25 Окончательное доказательство того, что GDF-9 является обязательным для фолликулогенеза, было получено в исследованиях на мышах с дефицитом GDF-9. 26 У этих животных отсутствие GDF-9 приводило к остановке роста и развития фолликулов на начальной стадии, и самки бесплодны. Эти данные подтверждают идею о том, что GDF-9, секретируемый яйцеклеткой, является обязательным для развития графиевых фолликулов, цитодифференцировки и пролиферации гранулезных клеток, а также для женской фертильности. Клиническая значимость этой новой концепции демонстрируется наличием мРНК GDF-9 в яичниках человека. 25 Текущие проблемы состоят в выяснении механизмов, контролирующих экспрессию GDF-9, и в идентификации клеток-мишеней для GDF-9 и биологических процессов, которые регулирует GDF-9.Представление о том, что факторы роста ооцитов контролируют фолликулогенез и фертильность, может иметь важные последствия для физиологии и патофизиологии человека.

Классификация.

Все графиовы фолликулы можно условно разделить на две группы: здоровые и атретические (рис. 21). Основное различие между этими двумя группами заключается в том, происходит ли апоптоз в клетках гранулезы. Развитие графиевого фолликула (здорового или атретичного) со временем прогрессирует.Это означает, что вариабельность или гетерогенность являются нормальным следствием фолликулогенеза. Здоровый графиевый фолликул со временем становится все более дифференцированным, пока не достигнет преовуляторной стадии (рис. 22). Время этого процесса (рис. 2) у женщин составляет около 2 месяцев. 3 Когда это происходит, существует временной и пространственный паттерн экспрессии большого количества генов. В здоровых фолликулах эти гены управляют цитодифференцировкой, пролиферацией и образованием фолликулярной жидкости.В атретических фолликулах зависимые от времени изменения экспрессии генов вызывают прекращение митоза и экспрессию апоптоза (, т.е. атрезия фолликула). Во время атрезии ооциты и клетки гранулезы становятся обязанными экспрессировать гены, которые приводят к апоптозу. 55 В здоровых и атретичных графиевых фолликулах механизмы контроля включают лиганд-зависимые сигнальные пути, которые ингибируют или стимулируют экспрессию дифференцировки и апоптоза (рис. 22). Понимание молекулярных механизмов и клеточных последствий сигнальных путей лиганд-рецептор, которые контролируют судьбу граафовых фолликулов, является основной целью репродуктивных исследований.

Рис. 21. Два основных класса графиевых фолликулов: здоровые и атретичные. Каждый из них претерпевает регулируемый курс прогрессивных изменений, которые приводят к овуляции или апоптозу. (Из Эриксона GF: Графиевый фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer- Verlag, 2000.)

Рис. 22. Схема жизненного цикла графиевых фолликулов в яичниках человека.(Из Эриксона Г.Ф.: Графический фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer-Verlag, 2000.)

Процесс образования граафового фолликула рост и развитие можно условно разделить на несколько стадий в зависимости от размера фолликула (рис. 2 и 22). Для клиницистов и исследователей удобно и важно определять физиологические функции различных типов или классов фолликулов в течение всего цикла.У здорового графического фолликула человека есть предназначение завершить переход от малого (от 1 до 6 мм), среднего (от 7 до 11 мм) и большого (от 12 до 17 мм) до полностью дифференцированного преовуляторного состояния (от 18 до 23 мм). . Атретический графиновый фолликул предназначен для завершения перехода от малой к средней стадии (от 1 до 10 мм), но оказывается неспособным вырасти до больших размеров в нормальных физиологических условиях. 56 Поскольку процесс развития графиевых фолликулов является асинхронным, он в любой момент времени производит большую гетерогенную популяцию графических фолликулов в яичниках (рис.3). Каждый из этих морфологически различных графиевых фолликулов представляет собой динамическую структуру, претерпевающую поток или прогрессию изменений в развитии на пути к тому, чтобы стать более дифференцированным или более атретичным (Рис. 22). Следует иметь в виду, что это приводит к наличию крайне неоднородного пула графиевых фолликулов. Это неоднородность, из-за которой трудно прийти к простому функциональному определению графического фолликула.

Размер графического фолликула в значительной степени определяется размером антрального отдела, который определяется объемом фолликулярной жидкости, который определяется биодоступностью ФСГ в жидкости. 57 ФСГ является обязательным для развития графиевых фолликулов, и никакой другой лиганд сам по себе не обладает способностью индуцировать образование фолликулярной жидкости. В отсутствие ФСГ фолликулярная жидкость не образуется, и графитовые фолликулы не развиваются. Разрастание клеток фолликула также способствует росту графиевых фолликулов; В здоровых фолликулах клетки гранулезы и тека сильно разрастаются (в 100 раз), при этом антральный отдел заполняется фолликулярной жидкостью (рис.23). Эти события (, т. Е. увеличенное накопление фолликулярной жидкости и пролиферация клеток) ответственны за огромный рост здоровых граафиевых фолликулов. 3 , 58 Напротив, именно прекращение митоза и образование фолликулярной жидкости определяет размер атретического граафиевого фолликула.

Рис. 23. Изменения количества гранулезных клеток и объема фолликулярной жидкости в граафовых фолликулах человека на протяжении фолликулогенеза.Доминирующий фолликул при овуляции имеет диаметр около 25 мм и содержит около 50 миллионов клеток гранулезы и 7 мл фолликулярной жидкости (из McNatty KP: Гормональные корреляты развития фолликулов в яичнике человека. Aust J Biol Sci 34: 249, 1981. )

Выбор доминантного фолликула.

В каждом менструальном цикле яичники обычно производят единственный доминантный фолликул, который участвует в единственной овуляции. Морфометрический анализ нормальных яичников человека (рис.2 и 3) указывает на то, что доминирующий фолликул, который будет овулировать в последующем цикле, выбран из когорты здоровых фолликулов класса 5 размером 4,7 ± 0,7 мм в диаметре в конце лютеиновой фазы менструального цикла. 1,2,3, 59 Во время отбора фолликул каждой когорты содержит полностью выросший ооцит, около 1 миллиона клеток гранулезы, внутреннюю теку, содержащую несколько слоев TIC, и внешнюю теку, состоящую из гладкомышечных клеток ( Рис.3 и 23).

Характерной чертой доминантного фолликула является высокая скорость митоза в клетках гранулезы.Данные свидетельствуют о том, что вскоре после середины лютеиновой фазы скорость митоза гранулезы резко (примерно в два раза) увеличивается в клетках гранулезы во всех фолликулах когорты. 2 , 56 , 60 Это говорит о том, что лютеолиз может сопровождаться всплеском митоза в гранулезе когорты фолликулов класса 5. Первым признаком того, что был выбран один фолликул, по-видимому, является то, что клетки гранулезы в выбранном фолликуле продолжают делиться с относительно быстрой скоростью, в то время как пролиферация в гранулезе фолликулов другой когорты замедляется.Поскольку это различие становится очевидным в конце лютеиновой фазы, утверждалось, что отбор происходит на поздней лютеиновой фазе менструального цикла. Вследствие увеличения митоза доминантный фолликул продолжает быстро расти 3 , 4 во время фолликулярной фазы, достигая 6,9 ± 0,5 мм в дни с 1 по 5, 13,7 ± 1,2 мм в дни с 6 по 10 и 18,8 ± 0,5 мм на 11-14 дни. И наоборот, рост в фолликулах когорты происходит медленнее, и со временем атрезия становится все более очевидной в фолликулах недоминирующей когорты, предположительно из-за экспрессии специфических генов в апоптотическом пути. 56 Атретический фолликул редко достигает в диаметре более 10 мм, независимо от стадии цикла. 4 , 56 , 60

Процесс.

Имеются убедительные доказательства лабораторных животных 61 и экспериментов на приматах, 62 , что для достижения доминирования фолликула необходимо добиться вторичного повышения уровня ФСГ в плазме. Как показано на рисунке 24, вторичный подъем ФСГ у женщин начинается за несколько дней до того, как уровни прогестерона упадут до базального уровня в конце лютеиновой фазы, а уровни ФСГ остаются повышенными в течение первой недели фолликулярной фазы цикла. 63 Эксперименты на обезьянах продемонстрировали, что доминантный фолликул подвергается атрезии, если вторичное повышение уровня ФСГ предотвращается обработкой экзогенным эстрадиолом. 64 Важной концепцией репродуктивной биологии является то, что повышение биоактивного ФСГ является обязательным для отбора фолликулов и фертильности. 33 , 65 Похоже, что снижение выработки эстрадиола желтым телом является основной причиной вторичного повышения ФСГ 66 , а не падения ингибина А, производного от желтого тела (рис.24).

Рис. 24. Лютеино-фолликулярный переход у женщин. Данные представляют собой средние значения (± SEM) для суточных уровней ингибина A, ингибина B, ФСГ, эстрадиола и прогестерона при лютеин-фолликулярном переходе у женщин с нормальным циклом ( n = 5). Данные сосредоточены на дне менструации во втором цикле. (Из Welt CK, Martin KA, Taylor AE et al: Частотная модуляция фолликулостимулирующего гормона (ФСГ) во время лютеин-фолликулярного перехода: Доказательства контроля ФСГ ингибина B в нормальные женщины.J Clin Endocrinol Metab 82: 2645, 1997, с разрешения Общества эндокринологов.)

Как происходит вторичный рост выбора контроля ФСГ? Результаты исследований фолликулярной жидкости человека подтверждают вывод о том, что повышение уровня ФСГ в плазме приводит к прогрессивному накоплению относительно высоких концентраций ФСГ в микросреде одного фолликула в когорте; этому фолликулу суждено стать доминирующим (рис. 25). При развитии здоровых (доминантных) фолликулов (фолликулы классов 5-8) средняя концентрация ФСГ в фолликулярной жидкости увеличивается примерно с 1.От 3 мМЕ / мл (около 58 нг / мл) до около 3,2 мМЕ / мл (около 143 нг / мл) через фолликулярную фазу. 4 , 67 Напротив, 4 , 67 уровни ФСГ низкие или неопределяемые в микросреде недоминирующих когортных фолликулов (рис. 25).

Рис. 25. Иллюстрация концепции, согласно которой доминантный фолликул содержит относительно высокие уровни фолликулостимулирующего гормона (ФСГ) в фолликулярной жидкости, тогда как уровни ФСГ низкие или неопределяемые в когортных фолликулах, предназначенных для атрезии. A. В доминантных фолликулах ФСГ в фолликулярной жидкости индуцирует активность P450 arom , которая метаболизирует андрогенный субстрат до эстрадиола (E 2 ). В таких фолликулах E 2 и андростендион (A 4 ) накапливаются в фолликулярной жидкости в очень высоких концентрациях. B. В недоминантных фолликулах низкие уровни ФСГ приводят к недостатку гранулезных клеток (GC) и низким концентрациям эстрадиола, несмотря на высокие уровни A 4 .(Из Erickson GF, Yen SSC: Новые данные о фолликулярных клетках в поликистозных яичниках: предлагаемый механизм возникновения кистозных фолликулов. Semin Reprod Endocrinol 2: 231, 1984.)

Поступление ФСГ в фолликулярную жидкость в Считается, что кавитация обеспечивает индукционный стимул, который запускает процесс роста и развития графитовых фолликулов. На клеточном уровне именно рецептор ФСГ на клетке гранулезы является основным игроком в этом процессе. Когда соответствующий высокий порог ФСГ достигается в одном графовом фолликуле, он становится доминирующим. 31 Напротив, маленькие графиевые фолликулы в когорте с подпороговыми уровнями ФСГ становятся недоминантными (рис. 22 и 25). Механизм, с помощью которого один маленький графовый фолликул в когорте способен концентрировать высокие уровни ФСГ в своем микроокружении, остается одной из загадок физиологии яичников. Важным моментом является то, что эстрадиол, продуцируемый доминантным фолликулом, ингибирует вторичный рост ФСГ по механизму отрицательной обратной связи (рис. 24 и 26). Считается, что это обеспечивает подпороговый уровень ФСГ в фолликулах недоминантной когорты, что затем приводит к атрезии.Митоз в клетках гранулезы фолликулов атретической когорты можно стимулировать путем лечения менопаузальным гонадотропином человека (чМГ) на ранней фолликулярной фазе. 59 Если уровни ФСГ повышены до пороговых уровней в микросреде, то недоминантные фолликулы могут быть спасены от атрезии. Этот феномен может иметь значение для способа, которым экзогенный ФСГ или чМГ запускает образование множественных доминантных фолликулов у женщин, подвергающихся индукции овуляции.

Рис.26. Диаграмма, иллюстрирующая важные последствия повышения уровня фолликулостимулирующего гормона (ФСГ) в ранней фолликулярной фазе менструального цикла человека на рост и развитие доминирующего фолликула.

Рост и развитие фолликулов | GLOWM

Фолликулогенез — это процесс, при котором рекрутированный примордиальный фолликул растет и развивается в специализированный графиевый фолликул, способный либо овулировать свою яйцеклетку в яйцевод в середине цикла для оплодотворения, либо умереть от атрезии.У женщин этот процесс длится долго, требуется почти 1 год для роста примордиального фолликула и его развития до стадии овуляции. В ходе фолликулогенеза рост достигается за счет пролиферации клеток и образования фолликулярной жидкости, тогда как развитие включает цитодифференцировку всех клеток и тканей в фолликуле. Только несколько фолликулов в яичниках человека выживают, чтобы завершить процесс цитодифференцировки, причем 99,9% из них умирают в результате запрограммированного механизма гибели клеток, называемого апоптозом.

Механизмы, регулирующие рост и развитие фолликулов, находятся под контролем изменяющихся концентраций лигандов ( i.е. гормонов и факторов роста). На эндокринном уровне фолликулогенез регулируется каскадным механизмом центральной нервной системы, передней доли гипофиза и яичников. Специализированные нейроны гипоталамуса выделяют импульсы гонадотропин-рилизинг-гормона (ГнРГ) в портальные кровеносные сосуды, которые действуют на гонадотрофов, вызывая пульсирующее высвобождение фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ), которые действуют на клетки фолликулов яичников. для контроля фолликулогенеза. Хотя ГнРГ, ФСГ и ЛГ критически важны в регуляции фолликулогенеза, гормоны и факторы роста, которые сами являются продуктами фолликула, могут действовать локально, модулируя (усиливая или ослабляя) действие ФСГ и ЛГ.Это аутокринная / паракринная система развивающихся фолликулов. Считается, что эта местная регуляторная система играет важную роль в сложных механизмах, управляющих временем фолликулогенеза и становится ли фолликул доминирующим или атретическим.

Хронология

Шаги и время фолликулогенеза человека показаны на рис. 2. У женщин фолликулогенез — длительный процесс. 1,2,3 В каждом менструальном цикле доминирующий фолликул, который овулирует своей яйцеклеткой, происходит из примордиального фолликула, который был задействован для инициирования роста почти на год раньше (рис.2). В широком смысле существует два типа фолликулов (рис. 2): преантральных (примордиальные, первичные, вторичные [класс 1], третичные [класс 2]) и антральных (графиальные, маленькие [класс 3, 4]. , 5], средний [6 класс], большой [7 класс], преовуляторный [8 класс]). Развитие преантральных и антральных фолликулов не зависит от гонадотропина и зависит от гонадотропина соответственно.

Рис. 2. Хронология фолликулогенеза в яичниках человека. Обратите внимание на временную шкалу на периферии. Преантральный период: Требуется 300 дней для рекрутированного зачатка, чтобы вырасти и развиться до стадии класса 2/3 (0,4 мм) или стадии кавитации (ранний антральный отдел). Атрезия может возникать в преантральных фолликулах 1, 2 и 3 класса. Антральный период: Фолликулу класса 4 (1-2 мм), если он выбран, требуется около 50 дней для роста и развития до преовуляторной стадии. Доминирующий фолликул цикла, по-видимому, выбран из когорты фолликулов класса 5, и ему требуется около 20 дней для развития до стадии овуляции.Атрезия часто встречается в антральном периоде. gc — количество гранулезных клеток; d, дни. (Из Gougeon A: Динамика роста фолликулов у человека: Модель на основе предварительных результатов. Hum Reprod 1:81, 1986.)

Скорость развития преантральных фолликулов медленная, требуется около 300 дней. для задействованного примордиального фолликула для завершения всего преантрального периода (рис. 2). Длительное время удвоения (около 10 дней) клеток гранулезы отвечает за медленную скорость роста. После образования антрального отдела в фолликуле 3 класса (около 0.4 мм) скорость роста увеличивается (рис. 2). Промежуток времени между формированием антрального отдела и развитием 20-миллиметрового преовуляторного фолликула составляет около 50 дней (рис. 2). Доминантный фолликул, по-видимому, выбран из когорты фолликулов класса 5 в конце лютеиновой фазы менструального цикла. 1,2,3,4 Для роста доминантного фолликула и его развития до преовуляторной стадии требуется от 15 до 20 дней (рис. 2). Атрезия может возникать во всех фолликулах (преантральном и антральном) после стадии фолликула класса 1 или вторичной; однако наибольшая частота встречаемости наблюдается в антральных фолликулах диаметром более 2 мм ( i.е. класс 5, 6 и 7) (рис.2).

Процесс

Фолликулогенез происходит в коре яичника (рис. 3). Фолликулы в коре головного мозга представлены в широком диапазоне размеров, представляющих различные стадии фолликулогенеза. Целью фолликулогенеза является создание единственного доминантного фолликула из пула растущих фолликулов. В этот процесс вовлечены четыре основных регуляторных события: рекрутирование, преантральное развитие фолликула, отбор и атрезия.

Рис.3. Микрофотография яичника взрослого примата. Фолликулярные и лютеиновые единицы видны в коре головного мозга, а крупные кровеносные сосуды и нервы — в продолговатом мозге. se, серозный или поверхностный эпителий; ta, tunica albuginea; pf — первичный фолликул; sf, вторичный фолликул; tf, третичный фолликул; gf, графиевый фолликул. (Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

ИСКОННЫЙ ФОЛЛИКЛ.

Все примордиальные фолликулы состоят из небольшого первичного ооцита (около 25 мкм в диаметре), задержанного на стадии диплотены (или диктиата) мейоза, одного слоя уплощенных (плоских) клеток гранулезы и базальной пластинки (рис.4). Средний диаметр примордиального фолликула человека составляет 29 мкм. 5 Благодаря базальной пластинке гранулеза и ооцит существуют в микроокружении, в котором не происходит прямого контакта с другими клетками. Примордиальные фолликулы не имеют самостоятельного кровоснабжения. 6 Следовательно, примордиальные фолликулы имеют ограниченный доступ к эндокринной системе.

Рис. 4. Электронная микрофотография первичного фолликула человека показывает уплощенные клетки гранулезы (GC), ооцит с его зародышевым пузырьком (GV) или ядром, тельце Balbiani (BB), со всеми собранными органеллами ооцита. у одного полюса GV и базальной пластинки (BL).(Из Эриксона Г.Ф.: Яичник: Основные принципы и концепции. В Фелиг П., Бакстер Дж. Д., Фроман Л. (ред.): Эндокринология и метаболизм. Нью-Йорк: МакГроу-Хилл, 1995.)

Набор персонала.

Первым важным событием в фолликулогенезе является набор. Вербовка — это процесс, при котором заблокированный примордиальный фолликул запускается, чтобы возобновить развитие и войти в пул растущих фолликулов. Все примордиальные фолликулы (ооциты), присутствующие в яичниках человека, образуются у плода между шестым и девятым месяцем беременности.Поскольку весь запас ооцитов в примордиальных фолликулах находится в профазе мейоза, ни один из них не способен к митотическому делению. Все ооциты (примордиальные фолликулы), способные участвовать в воспроизводстве в течение жизни женщины, присутствуют в яичниках при рождении (рис. 5). Общее количество примордиальных фолликулов в яичниках в любой момент времени называется резервом яичников (OR). 7 Процесс набора начинается вскоре после образования примордиальных фолликулов у плода, 8 и продолжается на протяжении всей жизни женщины до тех пор, пока пул примордиальных фолликулов не истощится в период менопаузы (рис.5). При старении наблюдается двухэкспоненциальное уменьшение OR 7 , 9 , 10 (рис. 6). Число примордиальных фолликулов неуклонно падает на протяжении более трех десятилетий, но когда OR достигает критического числа около 25000 в возрасте 37,5 ± 1,2 года, скорость потери примордиальных фолликулов увеличивается примерно в два раза (рис. 6). Это изменение OR связано с возрастным снижением плодовитости, что, возможно, является причиной возрастного увеличения ФСГ у женщин после 36 лет. 7

Рис. 5. Возрастные изменения количества примордиальных фолликулов (ооцитов) в яичниках человека. Левая панель: Количество яиц уменьшается от 6 месяцев беременности до 50 лет. (От Baker TG: Радиочувствительность ооцитов млекопитающих с особым упором на самку человека. Am J Obstet Gynecol 110: 746, 1971.) Правая панель: Микрофотографии, иллюстрирующие возрастное уменьшение примордиальных фолликулов ( стрелки, ) у человека. яичники.(Из Эриксона GF: Анализ развития фолликулов и созревания яйцеклетки. Semin Reprod Endocrinol 4: 233, 1986.)

Рис. 6. Связанное с возрастом уменьшение количества примордиальных фолликулов (PF) внутри оба яичника человека от рождения до менопаузы. В результате набора численность PF постепенно уменьшается с примерно 1 000 000 при рождении до примерно 24 000 в 37 лет. К 37 годам скорость набора увеличивается примерно вдвое, а количество PF снижается примерно до 1000 через 51 год ( i.е. — средний возраст начала менопаузы) (от Faddy MJ, Gosden RG, Gougeon A et al: Ускоренное исчезновение фолликулов яичников в среднем возрасте: значение для прогнозирования менопаузы. Hum Reprod 7: 1342, 1992.)

Механизм.

Первый видимый признак (рис. 7) рекрутирования примордиального фолликула — это то, что некоторые клетки гранулезы начинают менять плоскую форму на кубовидную. 5 Первая кубовидная клетка видна, когда примордиальный фолликул содержит 8 клеток гранулезы, и процесс завершается, когда число гранулез достигает 19 (рис.8). За изменением формы следует начало, хотя и медленное, синтеза ДНК и митоза в клетках гранулезы. 8 Изменение формы и приобретение митотического потенциала в клетках гранулезы являются отличительными признаками набора. Такие наблюдения предполагают, что механизмы, управляющие рекрутированием, могут включать регуляторный ответ на уровне клеток гранулезы. Рекрутмент не зависит от гипофиза и, вероятно, контролируется аутокринными / паракринными механизмами. Неизвестно, вызывает ли это стимулятор или потеря ингибитора; однако примордиальные фолликулы подвергаются быстрому рекрутированию при удалении из яичника и культивировании in vitro. 11 Эти наблюдения подтверждают идею ингибитора.

Рис. 7. Микрофотография нерастущего примордиального и вновь набранного (растущего) фолликула в яичнике человека. Обратите внимание на кубовидные клетки гранулезы ( стрелок, ) во вновь набранном примордиальном фолликуле.

Рис. 8. Связь между числом гранулез в наибольшем поперечном сечении фолликула и распределением уплощенных и кубовидных клеток.(Из Gougeon A, Chainy GBN: Морфометрические исследования мелких фолликулов в яичниках женщин в разном возрасте. J Reprod Fertil 81: 433, 1987.)

Для объяснения механизма рекрутирования было выдвинуто несколько различных гипотез. Во-первых, этот процесс, по-видимому, происходит в примордиальных фолликулах, ближайших к мозговому веществу, где видны кровеносные сосуды. Это подтверждает гипотезу о том, что воздействие питательных веществ или переносимых с кровью регуляторных молекул может играть роль в контроле рекрутирования.Во-вторых, был предложен механизм внутренних часов ооцитов для контроля рекрутирования. 12 В этой гипотезе часы связаны со временем, когда ооцит инициирует мейоз у эмбриона. Примечательно, что набор можно модулировать. 8 У грызунов скорость рекрутирования может быть снижена путем удаления вилочковой железы новорожденного, голодания или обработки экзогенными опиоидными пептидами. Это важные наблюдения, потому что они утверждают, что пути передачи сигналов лиганд-рецептор могут регулировать рекрутирование.Понимание регуляторных механизмов, лежащих в основе рекрутирования, остается важной задачей репродуктивной биологии.

ПРЕАНТРАЛЬНАЯ ФОЛЛИКЛА.

Ранние стадии фолликулогенеза можно разделить на три класса в зависимости от количества слоев клеток гранулезы, развития ткани теки и экспрессии небольшой полости или антрального отдела. Классы — первичные, вторичные и ранние третичные фолликулы (рис. 9). По мере увеличения морфологической сложности в фолликуле происходят важные клеточные и физиологические изменения, которые делают его способным реагировать на гонадотропины.В следующих разделах исследуются структурные и функциональные изменения, сопровождающие рост и развитие преантральных фолликулов.

Рис. 9. Диаграмма, показывающая размер и гистологическую организацию ранних развивающихся фолликулов человека во время гонадотропин-независимого периода фолликулогенеза. (Эриксон GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Frohman L (eds): Endocrinology and Metabolism. New York: McGraw-Hill, 1995.)

Первичный фолликул.

Первичный фолликул состоит из одной или нескольких кубовидных гранулезных клеток, которые расположены в одном слое, окружающем ооцит (рис. 10). Одновременно с изменением формы и митотической активностью, которые сопровождают рекрутинг (рис. 7 и 10), клетки кубовидной гранулезы начинают экспрессировать рецепторы ФСГ. 13 , 14 Механизм, лежащий в основе этого критического события в фолликулогенезе, остается неясным, но есть доказательства у грызунов 15 , что активин, полученный из гранулезы, может играть важную роль в экспрессии рецептора ФСГ посредством аутокринных / паракринных механизмов. (Рис.11). Хотя клетки гранулезы экспрессируют рецепторы ФСГ на этой очень ранней стадии фолликулогенеза, считается, что физиологические уровни ФСГ в плазме во время нормального менструального цикла не влияют на реакции гранулезы, поскольку первичные фолликулы не имеют независимой сосудистой системы. Тем не менее, поскольку поблизости находятся кровеносные сосуды (рис. 10), ФСГ-индуцированные изменения функции первичных фолликулов могут происходить в ответ на аномально высокие уровни ФСГ в плазме, такие как те, которые возникают во время индукции овуляции или старения.

Рис. 10. Рисунок развивающегося первичного фолликула, встроенного в соединительную ткань или строму коры яичника. Ядрышко и мейотические хромосомы очевидны в ядре ооцита. Митохондрии агрегированы на одном полюсе ядра ооцита (, т. Е. тельца Балбинни). Всего видно 19 кубовидных гранулезных клеток, одна из которых дает начало второму слою клеток (From Bloom W, Fawcett DW: A Textbook of Histology. Philadelphia: WB Saunders, 1975.)

Рис. 11. Схема предлагаемого механизма аутокринного контроля экспрессии рецепторов фолликулостимулирующего гормона в гранулезных клетках преантральных фолликулов. (Из Эриксона GF: Диссоциация эндокринной и гаметогенной функции яичников. Lobo R (ed): Perimenopause New York: Springer-Verlag, 1997.)

Начиная примерно с момента рекрутирования ооцит начинает расти и дифференцироваться.Этот период отмечен прогрессивным увеличением уровня синтеза РНК ооцитов. 16 В это время включен ряд важных генов ооцитов. Например, гены, кодирующие белки zona pellucida (ZP) (, т.е. ZP-1, ZP-2 и ZP-3), транскрибируются и транслируются. 17 Секретируемые белки ZP начинают полимеризоваться вблизи поверхности ооцита, образуя оболочку внеклеточного матрикса (пеллюцидную оболочку), которая в конечном итоге инкапсулирует яйцеклетку. Важность блестящей оболочки подчеркивается тем фактом, что углеводная часть ZP-3 представляет собой видоспецифичную молекулу, связывающую сперматозоиды. 18 Он отвечает за инициирование акросомной реакции в конденсированных сперматозоидах. 19

Во время развития первичного фолликула клетки гранулезы отправляют процессы через слой зоны, где они образуют щелевые соединения с клеточной мембраной ооцита или оолемме (Рис. 12). Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ и кальций. 20 , 21 Коннексин 37 (C × 37) представляет собой коннексин, полученный из ооцитов, который образует щелевые контакты между ооцитом и окружающими клетками гранулезы. 22 Данные, полученные от мышей с дефицитом C × 37, приписывают C × 37 обязательную роль в фолликулогенезе, овуляции и фертильности. 22 Большие щелевые соединения также присутствуют между самими клетками гранулезы (Рис. 12). C × 43 является основным белком щелевого соединения, экспрессируемым в клетках гранулезы. 23 В результате щелевых контактов первичный фолликул становится метаболически и электрически связанной единицей.Эта связь между гранулезой и ооцитом сохраняется на протяжении всего фолликулогенеза и отвечает за синхронное проявление важных активностей (положительных и отрицательных).

Рис. 12. Электронная микрофотография гранулезных клеток короны радиата ооцита в преантральном фолликуле. Отростки гранулезных клеток, пересекающие блестящую оболочку (ZP), образуют небольшие щелевые соединения ( стрелок, ) с плазматической мембраной ооцита. Между ячейками corona radiata видны более крупные щелевые соединения ( стрелки ).(Гилула Н.Б., Эпштейн М.Л., Бирс WH: Межклеточная коммуникация и овуляция: исследование комплекса кумулюс-ооцит. J Cell Biol 78:58, 1978, воспроизведено с разрешения Rockefeller University Press.)

Вторичный фолликул.

Вторичный фолликул — это преантральный фолликул с 2-10 слоями кубовидных или низко столбчатых клеток, которые образуют многослойный эпителий (рис. 13). Как видно на рисунке 10, переход от первичного ко вторичному фолликулу включает приобретение второго слоя клеток гранулезы.Этот переход осуществляется продолжающимся делением клеток гранулезы. Механизмы, регулирующие митоз гранулезы, плохо изучены. Однако захватывающие исследования на грызунах предоставили убедительные доказательства участия производного ооцитами фактора роста, называемого фактором дифференцировки роста-9 (GDF-9). GDF-9 является новым членом суперсемейства трансформирующих факторов роста β (TGF-β). 24 GDF-9 сильно экспрессируется в яичнике; локализуется только в ооцитах рекрутированных фолликулов. 25 У мышей с дефицитом GDF-9 рост и развитие фолликулов останавливаются на начальной стадии; следовательно, доминантные фолликулы не образуются, и самки бесплодны. 26 Соответственно, GDF-9 является обязательным для фолликулогенеза после первичной стадии, предположительно потому, что он является обязательным митогеном для клеток гранулезы. Фундаментальная концепция, вытекающая из этой работы, заключается в том, что ооцит играет ключевую роль в регуляции фолликулогенеза благодаря своей способности продуцировать новые регуляторные лиганды ( e.г. GDF-9), которые имеют решающее значение для фолликулогенеза.

Рис. 13. Типичный здоровый вторичный фолликул содержит полностью выросший ооцит, окруженный блестящей оболочкой, пять-восемь слоев гранулезных клеток, базальную пластинку и развивающуюся ткань теки с многочисленными кровеносными сосудами. (From Bloom W. , Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Одним из наиболее важных изменений, которые происходят в развитии вторичного фолликула, является приобретение слой тека.Эта ткань, которая состоит из слоя стромоподобных клеток вокруг базальной пластинки, впоследствии дифференцируется на внутреннюю и внешнюю теку (рис. 13). Развитие Theca сопровождается новообразованием множества мелких сосудов, предположительно за счет ангиогенеза (Fig. 13). Это критическое событие, потому что кровь циркулирует вокруг фолликула, доставляя питательные вещества и гормоны (, например, ФСГ, ЛГ) во вторичный фолликул, а также отходы и секреторные продукты. В связи с этим некоторые стромальные клетки внутреннего слоя экспрессируют рецепторы ЛГ. 27 Эти клетки впоследствии дифференцируются в стероидогенные клетки, называемые интерстициальными клетками теки (ТИК), наиболее вероятно в ответ на плазменный ЛГ, доставляемый сосудистой системой теки. 27 Все клетки гранулезы вторичных фолликулов экспрессируют рецепторы ФСГ. 13 Кажется вероятным, что диффузия плазменного ФСГ во вторичный фолликул может вызывать ФСГ-зависимые гранулезные ответы. Внешний слой клеток стромы впоследствии дифференцируется в клетки гладкой мускулатуры, называемые внешней текой.Эти гладкомышечные клетки иннервируются вегетативной нервной системой. 27

Во вторичном фолликуле ооцит завершает свой рост. Когда диаметр фолликула составляет около 200 мкм, ооцит достигает максимального размера и больше не растет, несмотря на то, что человеческий фолликул увеличивается в диаметре до 2 см и более (рис. 14). У грызунов хорошо известно, что клетки гранулезы играют обязательную роль в росте и дифференцировке ооцита. 28 , 29 Важным событием дифференциации, которое происходит, когда ооцит завершает свой рост, является приобретение способности возобновлять мейоз. 30 Ооциты обычно не возобновляют мейоз во время фолликулогенеза, и должен действовать механизм, ингибирующий этот процесс ( т.е. распад зародышевых пузырьков [GVBD]) и возобновление мейоза. Основной механизм торможения остается неизвестным; однако есть данные, подтверждающие концепцию, что цАМФ, полученный из гранулезы, может играть важную роль в ингибировании возобновления мейоза. 30 По такому механизму ФСГ индуцирует цАМФ в клетках гранулезы, который диффундирует в ооцит через щелевое соединение C × 37, где он продолжает ингибировать GVBD (рис.15).

Рис. 14. Диаграмма, показывающая соотношение между размером ооцита и размером фолликулов в яичнике младенца человека (от Мандл AM, Zuckerman S: Рост ооцита и фолликула у взрослой крысы .J Endocrinol 8: 126, 1952, воспроизведено с разрешения Общества эндокринологов.)

Рис. ГВБД) или возобновление меоизиса.Передача сигнала рецептора фолликулостимулирующего гормона (ФСГ) в клетках гранулезы приводит к увеличению продукции цАМФ. ЦАМФ может диффундировать через щелевые соединения гранулоза-ооцит коннексин-37 (C × 37), где он накапливается в больших количествах в ооплазме, чтобы ингибировать распад (BD) зародышевых пузырьков (GV) (, т.е. ингибирует возобновление мейоза или GVBD).

Третичный фолликул.

Когда преантральный фолликул завершает вторичную стадию развития, он содержит пять различных структурных единиц: полностью выросший ооцит, окруженный блестящей оболочкой, от шести до девяти слоев клеток гранулезы, базальную пластинку, внутреннюю и внешнюю теки. (Рис.13). Первым признаком начала развития третичного фолликула является появление полости в клетках гранулезы. 31 В ответ на внутренний стимул на одном полюсе ооцита начинает формироваться полость. Этот процесс, называемый кавитацией или началом образования антрального отдела, характеризуется накоплением жидкости между клетками гранулезы, что со временем приводит к образованию внутренней полости (рис. 16). По завершении кавитации устанавливается основной план графического фолликула, и все различные типы клеток занимают свои надлежащие места в ожидании стимулов, которые будут перемещать их по путям дифференцировки и пролиферации (рис.16). Основываясь на данных о фолликулах полиоцитов, механизм спецификации кавитации, вероятно, строго регулируется (Рис. 17).

Рис. 16. Микрофотография раннего третичного фолликула (диаметром 0,4 мм) при кавитации ранней стадии антрального отдела. ZP, zona pellucida; GC — клетки гранулезы; BL — базальная пластинка; TI, theca interna; TE, theca externa; наконечников стрел, митозов гранулезы (от Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975, с разрешения Arnold Ltd.)

Рис. 17. Микрофотография полиовулярного фолликула на ранней третичной стадии показывает места кавитации или раннего образования антрального отдела ( чистых пространств ) сразу над ооцитами ( звездочка ). Это событие, которое находится под внутриовариальным контролем, по-видимому, возникает особым синхронизированным образом и устанавливает полярность фолликула. ​​(Из Zamboni L: Comparative studies on ultra-structure of the mammaterial oocytes. In Biggers JD and Schultz AW (eds) : Оогенез. Балтимор: University Park Press, 19972.)

Что контролирует кавитацию или раннее образование антрального отдела желудка? Хорошо известно, что кавитация возникает у гипофизэктомированных животных, демонстрируя, что гормоны гипофиза, такие как ФСГ, не требуются для этого морфогенетического события. 32 С этой концепцией согласуется наблюдение, что кавитация возникает у мышей с дефицитом ФСГ-β. 33 , 34 Кажется разумным сделать вывод, что кавитация контролируется аутокринными / паракринными механизмами.В кавитацию вовлечены два фактора роста, экспрессируемые в самом фолликуле: активин и лиганд KIT. Обработка культивированных клеток гранулезы активином вызывает морфогенетические изменения, которые приводят к образованию гистологической единицы с антральной полостью. 35 Блокирование действия лиганда KIT в яичнике предотвращает образование антральных фолликулов; следовательно, овуляции нет, и самка бесплодна. 36 В этом отношении данные подтверждают концепцию, что щелевые соединения ооцитов также важны для кавитации.Щелевые соединения — это межклеточные каналы, состоящие из белков, называемых коннексинами. 20 , 21 Существует по крайней мере 13 членов семейства коннексинов, которые напрямую связывают соседние клетки, обеспечивая диффузию ионов, метаболитов и других низкомолекулярных сигнальных молекул, таких как цАМФ. 20 , 21 C × 37, по-видимому, представляет собой коннексин, полученный из ооцитов, который образует щелевые соединения между ооцитом и окружающими клетками гранулезы. Данные, полученные на мышах с дефицитом C × 37, приписывают C × 37 обязательную роль в формировании графических фолликулов, овуляции и фертильности. 22 В совокупности все эти данные свидетельствуют о том, что активин, полученный из фолликулов, KIT и C × 37 участвуют в аутокринных / паракринных механизмах, контролирующих кавитацию.

ГРАФИАНСКИЙ ФОЛЛИКЛ.

Графический фолликул можно определить структурно как гетерогенное семейство относительно больших фолликулов (от 0,4 до 23 мм), характеризующихся полостью или антральным отделом, содержащим жидкость, называемую фолликулярной жидкостью или ликворными фолликулами. Характерной структурной единицей всех графиевых фолликулов является антральный отдел.По этой причине термин антральный фолликул правильно используется как синоним графиевого фолликула. Фолликулярная жидкость — это среда, в которой находятся клетки гранулезы и ооцит, и через которую регуляторные молекулы должны проходить на своем пути в эту микросреду и из нее. 37 Удивительно, но мы почти ничего не знаем о физиологическом значении антрального отдела и фолликулярной жидкости в фолликулогенезе. Понятно, что развитие фолликулов и овуляция происходят у птиц и земноводных, несмотря на отсутствие антрального отдела и фолликулярной жидкости.Тем не менее его присутствие у всех видов млекопитающих свидетельствует о его физиологическом значении.

Структура.

Графический фолликул представляет собой трехмерную структуру с центральным антральным отделом, окруженным множеством различных типов клеток (рис. 18). В графовом фолликуле есть шесть различных гистологических компонентов, включая внешнюю, внутреннюю, базальную пластинки, клетки гранулезы, ооцит и фолликулярную жидкость (рис. 18). Графический фолликул не меняет своей морфологической сложности по мере роста.Все графиевые фолликулы имеют одинаковую базовую архитектуру; Несмотря на то, что размер графических фолликулов резко изменился, их внешний вид остается более или менее неизменным.

Рис. 18. Схема архитектуры типичного графического фолликула класса 5. (Из Эриксона GF: Яичник: Основные принципы и концепции. In Felig P, Baxter JD, Broadus AE, Froman LA, (eds) : Эндокринология и метаболизм. 3-е изд. Нью-Йорк: McGraw-Hill, 1987.)

Theca externa (Рис.19) характеризуется наличием гладкомышечных клеток, 38 , 39 , которые иннервируются вегетативными нервами. 27 Хотя физиологическое значение наружной теки остается неясным, есть свидетельства того, что она сокращается во время овуляции и атрезии. 40 , 41 Изменения сократительной активности наружной теки могут быть связаны с атрезией и овуляцией; однако это не было строго доказано. Желтое тело сохраняет внешнюю теку на протяжении всей своей жизни, 42 , но значение при лютеинизации и лютеолизе неизвестно.

Рис. 19. Чертеж стенки графического фолликула. ​​(Из Bloom W., Fawcett DW: A Учебник гистологии. Philadelphia: WB Saunders, 1975.)

Theca interna состоит из дифференцированных TIC, расположенных в матрице рыхлой соединительной ткани и кровеносных сосудов (рис. 19). Во всех граафовых фолликулах ЛГ является ключевым регулирующим гормоном функции TIC, и его важность в регулировании продукции андрогенов TIC in vivo и in vitro установлена. 27 Начиная с самых ранних стадий развития графиевых фолликулов, TIC выражают свое дифференцированное состояние в виде андрогенов (, т.е. клеток, продуцирующих андростендион). 27 Внутренняя тека обильно васкуляризирована и служит для доставки гормонов ( например, ФСГ, ЛГ), молекул питательных веществ, витаминов и кофакторов, необходимых для роста и дифференцировки ооцитов и клеток гранулезы.

Нам мало известно о регуляторных элементах, контролирующих сосудистую сеть теки.Функциональная связь между сосудистой сетью и развитием графиевых фолликулов подтверждается свидетельством 43 , что все граафовые фолликулы обезьян экспрессируют высокие уровни рецепторов ФСГ и ЛГ независимо от размера, но при введении 125 I-хорионический гонадотропин человека (ХГЧ) Системно только доминирующий граафовый фолликул, по-видимому, способен накапливать 125 I-ХГЧ в внутренней теке. Эти результаты предполагают, что доминирующий графиевый фолликул выражает повышенную васкуляризацию, которая играет важную роль в его выбранном созревании.В связи с этим интенсивно исследуются фактор роста эндотелия сосудов из фолликулов 44 , 45 и другие ангиогенные факторы, такие как эндотелин 46 .

Компартменты теки (, т.е. theca externa и interna) выражают свои дифференцированные функции в начале развития графического фолликула (при кавитации) и, по-видимому, конститутивно выражают зрелый фенотип на протяжении всей жизни и смерти графического фолликула.В широком смысле существует мало или совсем нет доказательств того, что серьезные изменения происходят в слоях теки на различных стадиях развития графиевых фолликулов, помимо тех, которые связаны с сосудистой и пролиферативной активностью. Это может означать, что именно клетки гранулезы (и, возможно, ооцит) являются вариабельными и, следовательно, ответственными за разнообразие графических фолликулов.

В граафовом фолликуле гранулезные клетки и ооцит существуют как масса точно сформированных и точно расположенных клеток (рис.18). Пространственное изменение создает по крайней мере четыре различных слоя или домена гранулезных клеток: самый внешний домен — это гранулезная мембрана, самый внутренний домен — периантраль, промежуточный домен — кучевой оофорус, а домен, расположенный рядом с ооцитом, — это лучшая корона ( Рис.20). Характерным гистологическим свойством мембранного домена является то, что он состоит из псевдостратифицированного эпителия высоких столбчатых гранулезных клеток, все из которых прикреплены к базальной пластинке.

Рис. 20. Схема структурной и функциональной неоднородности клеток гранулезы в здоровом фолликуле графита. Относительное положение гранулезной клетки в клеточной массе определяет ее способность к пролиферации и дифференцировке (от Erickson GF: Graafian follicle: A function definition. In Adashi EY (ed): Ovulation: Evolving Scientific and Clinical Concepts. New York : Springer-Verlag, 2000.)

Дифференцировку гранулезной клетки можно проследить по ее положению в клеточной массе (рис.20). Например, клетки в домене мембраны прекращают пролиферировать раньше, чем в центральном домене. 47 , 48 Способность клеток гранулезы во внутренних доменах продолжать делиться на протяжении всего развития графиевых фолликулов, предполагает, что они могут быть клетками-предшественниками. Прекращение митоза в домене мембраны характеризуется прогрессирующим выражением явной дифференцировки, при которой они принимают функциональный фенотип полностью дифференцированных клеток. Этот процесс требует временной и координированной экспрессии генов, которые составляют основу цитодифференцировки гранулезы.Механизмы, с помощью которых это происходит, включают лиганд-зависимые сигнальные пути, которые связаны с активацией и ингибированием определенных генов. Например, нормальная дифференцировка клеток гранулезной мембраны требует активации специфических генов, в том числе генов ароматазы цитохрома P450 (P450 arom ) 49 и рецептора LH, 50 и ингибирования структурных генов в пути апоптоза. . Напротив, клетки гранулезы в периантральном, кучевом и лучистом доменах пролиферируют, но не могут экспрессировать гены, участвующие в терминальной дифференцировке (рис.20).

Что контролирует неоднородность гранулезы? Все клетки гранулезы в здоровом фолликуле графита экспрессируют рецептор ФСГ, 13 , 51 , 52 , и было показано, что мышиные гранулезные клетки в мембранных и кучевых доменах продуцируют цАМФ в ответ на стимуляцию ФСГ. . 53 Эти наблюдения доказывают, что пост-цАМФ регуляторные события участвуют в аспектах гетерогенности гранулезы. Идея о том, что ооцит играет ключевую роль в возникновении различных паттернов цитодифференцировки гранулезы во время развития графиевых фолликулов, подтверждается исследованиями на грызунах. 54 Между ооцитом и клетками гранулезы происходит диалог, который оказывает большое влияние на фолликулогенез. В развивающихся граафовых фолликулах мышей дифференциальный паттерн пролиферации и дифференцировки между гранулезой в мембранных и кумулюсных доменах находится под контролем секретируемых морфогенов ооцитов. 54 Новый член семейства TGF-β, GDF-9, был обнаружен у мышей. 24 , 25 Окончательное доказательство того, что GDF-9 является обязательным для фолликулогенеза, было получено в исследованиях на мышах с дефицитом GDF-9. 26 У этих животных отсутствие GDF-9 приводило к остановке роста и развития фолликулов на начальной стадии, и самки бесплодны. Эти данные подтверждают идею о том, что GDF-9, секретируемый яйцеклеткой, является обязательным для развития графиевых фолликулов, цитодифференцировки и пролиферации гранулезных клеток, а также для женской фертильности. Клиническая значимость этой новой концепции демонстрируется наличием мРНК GDF-9 в яичниках человека. 25 Текущие проблемы состоят в выяснении механизмов, контролирующих экспрессию GDF-9, и в идентификации клеток-мишеней для GDF-9 и биологических процессов, которые регулирует GDF-9.Представление о том, что факторы роста ооцитов контролируют фолликулогенез и фертильность, может иметь важные последствия для физиологии и патофизиологии человека.

Классификация.

Все графиовы фолликулы можно условно разделить на две группы: здоровые и атретические (рис. 21). Основное различие между этими двумя группами заключается в том, происходит ли апоптоз в клетках гранулезы. Развитие графиевого фолликула (здорового или атретичного) со временем прогрессирует.Это означает, что вариабельность или гетерогенность являются нормальным следствием фолликулогенеза. Здоровый графиевый фолликул со временем становится все более дифференцированным, пока не достигнет преовуляторной стадии (рис. 22). Время этого процесса (рис. 2) у женщин составляет около 2 месяцев. 3 Когда это происходит, существует временной и пространственный паттерн экспрессии большого количества генов. В здоровых фолликулах эти гены управляют цитодифференцировкой, пролиферацией и образованием фолликулярной жидкости.В атретических фолликулах зависимые от времени изменения экспрессии генов вызывают прекращение митоза и экспрессию апоптоза (, т.е. атрезия фолликула). Во время атрезии ооциты и клетки гранулезы становятся обязанными экспрессировать гены, которые приводят к апоптозу. 55 В здоровых и атретичных графиевых фолликулах механизмы контроля включают лиганд-зависимые сигнальные пути, которые ингибируют или стимулируют экспрессию дифференцировки и апоптоза (рис. 22). Понимание молекулярных механизмов и клеточных последствий сигнальных путей лиганд-рецептор, которые контролируют судьбу граафовых фолликулов, является основной целью репродуктивных исследований.

Рис. 21. Два основных класса графиевых фолликулов: здоровые и атретичные. Каждый из них претерпевает регулируемый курс прогрессивных изменений, которые приводят к овуляции или апоптозу. (Из Эриксона GF: Графиевый фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer- Verlag, 2000.)

Рис. 22. Схема жизненного цикла графиевых фолликулов в яичниках человека.(Из Эриксона Г.Ф.: Графический фолликул: функциональное определение. В Adashi EY (ed): Овуляция: эволюция научных и клинических концепций. Нью-Йорк: Springer-Verlag, 2000.)

Процесс образования граафового фолликула рост и развитие можно условно разделить на несколько стадий в зависимости от размера фолликула (рис. 2 и 22). Для клиницистов и исследователей удобно и важно определять физиологические функции различных типов или классов фолликулов в течение всего цикла.У здорового графического фолликула человека есть предназначение завершить переход от малого (от 1 до 6 мм), среднего (от 7 до 11 мм) и большого (от 12 до 17 мм) до полностью дифференцированного преовуляторного состояния (от 18 до 23 мм). . Атретический графиновый фолликул предназначен для завершения перехода от малой к средней стадии (от 1 до 10 мм), но оказывается неспособным вырасти до больших размеров в нормальных физиологических условиях. 56 Поскольку процесс развития графиевых фолликулов является асинхронным, он в любой момент времени производит большую гетерогенную популяцию графических фолликулов в яичниках (рис.3). Каждый из этих морфологически различных графиевых фолликулов представляет собой динамическую структуру, претерпевающую поток или прогрессию изменений в развитии на пути к тому, чтобы стать более дифференцированным или более атретичным (Рис. 22). Следует иметь в виду, что это приводит к наличию крайне неоднородного пула графиевых фолликулов. Это неоднородность, из-за которой трудно прийти к простому функциональному определению графического фолликула.

Размер графического фолликула в значительной степени определяется размером антрального отдела, который определяется объемом фолликулярной жидкости, который определяется биодоступностью ФСГ в жидкости. 57 ФСГ является обязательным для развития графиевых фолликулов, и никакой другой лиганд сам по себе не обладает способностью индуцировать образование фолликулярной жидкости. В отсутствие ФСГ фолликулярная жидкость не образуется, и графитовые фолликулы не развиваются. Разрастание клеток фолликула также способствует росту графиевых фолликулов; В здоровых фолликулах клетки гранулезы и тека сильно разрастаются (в 100 раз), при этом антральный отдел заполняется фолликулярной жидкостью (рис.23). Эти события (, т. Е. увеличенное накопление фолликулярной жидкости и пролиферация клеток) ответственны за огромный рост здоровых граафиевых фолликулов. 3 , 58 Напротив, именно прекращение митоза и образование фолликулярной жидкости определяет размер атретического граафиевого фолликула.

Рис. 23. Изменения количества гранулезных клеток и объема фолликулярной жидкости в граафовых фолликулах человека на протяжении фолликулогенеза.Доминирующий фолликул при овуляции имеет диаметр около 25 мм и содержит около 50 миллионов клеток гранулезы и 7 мл фолликулярной жидкости (из McNatty KP: Гормональные корреляты развития фолликулов в яичнике человека. Aust J Biol Sci 34: 249, 1981. )

Выбор доминантного фолликула.

В каждом менструальном цикле яичники обычно производят единственный доминантный фолликул, который участвует в единственной овуляции. Морфометрический анализ нормальных яичников человека (рис.2 и 3) указывает на то, что доминирующий фолликул, который будет овулировать в последующем цикле, выбран из когорты здоровых фолликулов класса 5 размером 4,7 ± 0,7 мм в диаметре в конце лютеиновой фазы менструального цикла. 1,2,3, 59 Во время отбора фолликул каждой когорты содержит полностью выросший ооцит, около 1 миллиона клеток гранулезы, внутреннюю теку, содержащую несколько слоев TIC, и внешнюю теку, состоящую из гладкомышечных клеток ( Рис.3 и 23).

Характерной чертой доминантного фолликула является высокая скорость митоза в клетках гранулезы.Данные свидетельствуют о том, что вскоре после середины лютеиновой фазы скорость митоза гранулезы резко (примерно в два раза) увеличивается в клетках гранулезы во всех фолликулах когорты. 2 , 56 , 60 Это говорит о том, что лютеолиз может сопровождаться всплеском митоза в гранулезе когорты фолликулов класса 5. Первым признаком того, что был выбран один фолликул, по-видимому, является то, что клетки гранулезы в выбранном фолликуле продолжают делиться с относительно быстрой скоростью, в то время как пролиферация в гранулезе фолликулов другой когорты замедляется.Поскольку это различие становится очевидным в конце лютеиновой фазы, утверждалось, что отбор происходит на поздней лютеиновой фазе менструального цикла. Вследствие увеличения митоза доминантный фолликул продолжает быстро расти 3 , 4 во время фолликулярной фазы, достигая 6,9 ± 0,5 мм в дни с 1 по 5, 13,7 ± 1,2 мм в дни с 6 по 10 и 18,8 ± 0,5 мм на 11-14 дни. И наоборот, рост в фолликулах когорты происходит медленнее, и со временем атрезия становится все более очевидной в фолликулах недоминирующей когорты, предположительно из-за экспрессии специфических генов в апоптотическом пути. 56 Атретический фолликул редко достигает в диаметре более 10 мм, независимо от стадии цикла. 4 , 56 , 60

Процесс.

Имеются убедительные доказательства лабораторных животных 61 и экспериментов на приматах, 62 , что для достижения доминирования фолликула необходимо добиться вторичного повышения уровня ФСГ в плазме. Как показано на рисунке 24, вторичный подъем ФСГ у женщин начинается за несколько дней до того, как уровни прогестерона упадут до базального уровня в конце лютеиновой фазы, а уровни ФСГ остаются повышенными в течение первой недели фолликулярной фазы цикла. 63 Эксперименты на обезьянах продемонстрировали, что доминантный фолликул подвергается атрезии, если вторичное повышение уровня ФСГ предотвращается обработкой экзогенным эстрадиолом. 64 Важной концепцией репродуктивной биологии является то, что повышение биоактивного ФСГ является обязательным для отбора фолликулов и фертильности. 33 , 65 Похоже, что снижение выработки эстрадиола желтым телом является основной причиной вторичного повышения ФСГ 66 , а не падения ингибина А, производного от желтого тела (рис.24).

Рис. 24. Лютеино-фолликулярный переход у женщин. Данные представляют собой средние значения (± SEM) для суточных уровней ингибина A, ингибина B, ФСГ, эстрадиола и прогестерона при лютеин-фолликулярном переходе у женщин с нормальным циклом ( n = 5). Данные сосредоточены на дне менструации во втором цикле. (Из Welt CK, Martin KA, Taylor AE et al: Частотная модуляция фолликулостимулирующего гормона (ФСГ) во время лютеин-фолликулярного перехода: Доказательства контроля ФСГ ингибина B в нормальные женщины.J Clin Endocrinol Metab 82: 2645, 1997, с разрешения Общества эндокринологов.)

Как происходит вторичный рост выбора контроля ФСГ? Результаты исследований фолликулярной жидкости человека подтверждают вывод о том, что повышение уровня ФСГ в плазме приводит к прогрессивному накоплению относительно высоких концентраций ФСГ в микросреде одного фолликула в когорте; этому фолликулу суждено стать доминирующим (рис. 25). При развитии здоровых (доминантных) фолликулов (фолликулы классов 5-8) средняя концентрация ФСГ в фолликулярной жидкости увеличивается примерно с 1.От 3 мМЕ / мл (около 58 нг / мл) до около 3,2 мМЕ / мл (около 143 нг / мл) через фолликулярную фазу. 4 , 67 Напротив, 4 , 67 уровни ФСГ низкие или неопределяемые в микросреде недоминирующих когортных фолликулов (рис. 25).

Рис. 25. Иллюстрация концепции, согласно которой доминантный фолликул содержит относительно высокие уровни фолликулостимулирующего гормона (ФСГ) в фолликулярной жидкости, тогда как уровни ФСГ низкие или неопределяемые в когортных фолликулах, предназначенных для атрезии. A. В доминантных фолликулах ФСГ в фолликулярной жидкости индуцирует активность P450 arom , которая метаболизирует андрогенный субстрат до эстрадиола (E 2 ). В таких фолликулах E 2 и андростендион (A 4 ) накапливаются в фолликулярной жидкости в очень высоких концентрациях. B. В недоминантных фолликулах низкие уровни ФСГ приводят к недостатку гранулезных клеток (GC) и низким концентрациям эстрадиола, несмотря на высокие уровни A 4 .(Из Erickson GF, Yen SSC: Новые данные о фолликулярных клетках в поликистозных яичниках: предлагаемый механизм возникновения кистозных фолликулов. Semin Reprod Endocrinol 2: 231, 1984.)

Поступление ФСГ в фолликулярную жидкость в Считается, что кавитация обеспечивает индукционный стимул, который запускает процесс роста и развития графитовых фолликулов. На клеточном уровне именно рецептор ФСГ на клетке гранулезы является основным игроком в этом процессе. Когда соответствующий высокий порог ФСГ достигается в одном графовом фолликуле, он становится доминирующим. 31 Напротив, маленькие графиевые фолликулы в когорте с подпороговыми уровнями ФСГ становятся недоминантными (рис. 22 и 25). Механизм, с помощью которого один маленький графовый фолликул в когорте способен концентрировать высокие уровни ФСГ в своем микроокружении, остается одной из загадок физиологии яичников. Важным моментом является то, что эстрадиол, продуцируемый доминантным фолликулом, ингибирует вторичный рост ФСГ по механизму отрицательной обратной связи (рис. 24 и 26). Считается, что это обеспечивает подпороговый уровень ФСГ в фолликулах недоминантной когорты, что затем приводит к атрезии.Митоз в клетках гранулезы фолликулов атретической когорты можно стимулировать путем лечения менопаузальным гонадотропином человека (чМГ) на ранней фолликулярной фазе. 59 Если уровни ФСГ повышены до пороговых уровней в микросреде, то недоминантные фолликулы могут быть спасены от атрезии. Этот феномен может иметь значение для способа, которым экзогенный ФСГ или чМГ запускает образование множественных доминантных фолликулов у женщин, подвергающихся индукции овуляции.

Рис.26. Диаграмма, иллюстрирующая важные последствия повышения уровня фолликулостимулирующего гормона (ФСГ) в ранней фолликулярной фазе менструального цикла человека на рост и развитие доминирующего фолликула.

Специалист по сохранению бесплодия и фертильности

Уважаемые читатели:

Это третья часть серии , которую я начал, чтобы помочь ответить, что такое экстракорпоральное оплодотворение (ЭКО) и как оно работает с моей аудиторией в блогах во всем мире.Вы читаете здесь то, что я также ежедневно предоставляю своим пациентам. Я планирую вдаваться в некоторые детали, но так, чтобы они были понятны обычной (непрофессиональной) аудитории, а не медицинской или научной. Я также надеюсь, что это не только прояснит, через что вам предстоит пройти, но и объяснит, почему все делается определенным образом и каковы цели каждого шага. Я также хочу сказать, что ЭКО на самом деле является заменой некоторых «естественных» шагов, необходимых для зачатия, а не какого-то чудесного высокотехнологичного лечения бесплодия, при котором пациентки беременеют искусственно, как многие думают.Это своего рода чудо, что мы можем сделать столько, сколько можем, но есть еще много вещей / шагов, на которые мы не можем сделать или повлиять. Я надеюсь, что это обсуждение принесет вам пользу. Эта серия статей будет размещена в рассрочку в течение следующих нескольких недель.

ШАГ ВТОРОЙ: ФОЛЛИКУЛЬНЫЙ РОСТ И СОЗРЕВАНИЕ ЯЙЦА

Под влиянием ФСГ (фолликулостимулирующего гормона) спящие фолликулы в яичнике начинают расти. Измерение количества спящих фолликулов называется «подсчетом антральных фолликулов (AFC)» и также измеряется «антимюллеровым гормоном (AMH)».Оба этих измерения используются, чтобы дать представление о способности яичников к стимуляции, также известной как резерв яичников, аналогично уровню ФСГ. Это дополнительные косвенные измерения. Многие врачи и пациенты считают, что эти два измерения фактически говорят им, сколько яйцеклеток осталось в яичниках, но это слишком ошибочная интерпретация. У нас нет технологии, чтобы узнать, сколько яиц присутствует, без тщательного вскрытия яичников. Итак, это косвенных измерений , которые служат предупреждением о вашей фертильности.Их единственное назначение — помочь предсказать, насколько это возможно, будут ли яичники давать много фолликулов при гиперстимуляции, которая возникает при увеличении количества ФСГ.

Таким образом, реальная интерпретация низкого AFC или AMH заключается в том, что может образовываться меньшее количество фолликулов и, следовательно, меньше извлекаемых яйцеклеток. Как объяснялось ранее, это дополнительные измерения «яичникового резерва». Они предсказывают успех только со статистической точки зрения, потому что часть того, как ЭКО увеличивает ваши шансы на фертильность, заключается в увеличении количества яйцеклеток, доступных для оплодотворения, и, следовательно, количества эмпиосов и, следовательно, увеличения шансов найти идеальный эмпио, который будет привести к беременности, как описано в предыдущем разделе. Это полное недоразумение или неправильное толкование, чтобы сказать, что низкий AFC или низкий AMH указывает на то, что вы бесплодны, что ваши яичники не будут стимулировать или что у вас не будет хороших яйцеклеток! Вместе с повышенным уровнем ФСГ эти измерения служат тревожным сигналом с точки зрения времени. Это означает, что у вас может быть не так много времени , чтобы забеременеть с помощью собственных яиц, как вы могли подумать. Поскольку мы не можем предсказать, когда у вас закончится время, время становится решающим фактором.

В настоящее время трансвагинальное ультразвуковое исследование используется для мониторинга роста фолликулов путем простого измерения фолликулов. Обычно это средний диаметр, полученный при горизонтальном и вертикальном измерении фолликула и указываемый в миллиметрах (мм). Поскольку яичник стимулируется ФСГ, некоторые фолликулы будут расти. Фолликулы растут примерно на 2 мм в день, поэтому есть некоторая предсказуемость того, когда фолликулы достигнут подходящего размера для овуляции или извлечения.По мере расширения фолликула гормон эстрадиола вырабатывается в увеличивающихся количествах растущим фолликулом, поэтому можно контролировать уровень эстрадиола, чтобы также помочь определить прогресс. Цель ЭКО — получить 15-20 фолликулов и уровень эстрадиола в пределах 2000-4000. Каждый зрелый фолликул будет производить примерно 150–250 эстрадиола. При ЭКО мы хотим поддерживать уровень эстрадиола на уровне менее 4000, потому что, если растет более 20 фолликулов, а уровень эстрадиола превышает 4000, существует повышенный риск заболевания, называемого «синдромом гиперстимуляции яичников».Это совершенно другая тема, поэтому здесь ее объяснять не будем. Достаточно сказать, что СГЯ потенциально может привести к смерти в наихудшей форме. Компетентный врач, имеющий опыт проведения ЭКО, примет соответствующие меры, чтобы этого не произошло.

Известно, что фолликул должен достичь среднего диаметра не менее 15 мм, чтобы яйцеклетка внутри созрела. Яйцо не видно, потому что оно микроскопических размеров. Следовательно, созревание зависит от размера фолликула, как было показано в ранних исследованиях ЭКО.В большинстве клиник ЭКО считается, что фолликул имеет зрелый размер и подходит для срабатывания, когда он достигнет не менее 18 мм, но на основании предыдущих исследований он может составлять всего 15 мм. Поскольку фолликулы будут расти неравномерно, а это означает, что некоторые из них будут расти быстрее, а некоторые — медленнее, большинство врачей будут назначать ХГЧ, когда 2-4 фолликула достигают зрелого размера или когда максимальное количество составляет 15-24 мм. Я предпочитаю, чтобы более крупные фолликулы были размером 20-24 мм, которые я решил использовать, основываясь на моем многолетнем опыте.Я не обязательно срабатываю, когда самые большие достигают этого размера, скорее, . Я хочу получить столько фолликулов в зрелой стадии, сколько смогу , не теряя при этом более крупные или иметь слишком много мелких. Проблема с фолликулами меньшего размера заключается в том, что у яйцеклеток в них не будет достаточно времени для созревания, и они будут непригодны для использования. Кроме того, фолликулы, размер которых превышает 24 мм, обычно имеют перезрелые и, следовательно, нежизнеспособные яйца. Как только большая часть фолликулов достигает размера 20-24 мм, вы готовы к «пусковому» выстрелу.Решение о том, когда делать эту инъекцию, определяется опытом врача в области ЭКО. Если ввести слишком рано , вы можете потерять яйца, потому что они не созреют. Слишком поздно, и вы можете потерять их , потому что они перезреют. Цель состоит в том, чтобы получить как можно больше зрелых яиц, потому что только зрелые яйца будут оплодотворяться.

До тех пор, пока не будет дан пусковой импульс (или в организме произойдет выброс ЛГ, если это произойдет естественным образом), яйцеклетка в фолликуле не проходит заключительную фазу созревания, стадию 2 мейоза.Яйца внутри фолликула обычно находятся в стадии «зародышевого пузырька (ЗП)». Как только происходит стимуляция , они затем проходят фазу 1 мейоза (M1), а затем созревают в фазе 2 мейоза (M2). В естественном репродуктивном процессе «спусковой механизм» происходит под действием гормона, называемого ЛГ (лютеинизирующий гормон), и известен как выброс ЛГ. Это то, что проверяется при использовании комплекта детектора овуляции. Внезапное повышение уровня гормона ЛГ дает сигнал яичнику начать овуляцию.

При ЭКО гормон ХГЧ (хорионический гонадотропин человека), который химически подобен ЛГ, заменяет ЛГ, чтобы яйца прошли финальную фазу созревания и начали процесс овуляции. Есть три источника этого лекарства:

(1) ХГЧ, выделенный из мочи человека,

(2) Рекомбитантный ХГЧ (синтезированный ХГЧ) и

(3) Лупрон, еще один препарат, имеющий химическую структуру, аналогичную ЛГ.

Lupron можно использовать только в том случае, если вы принимаете антагонистический протокол с Ganerelix или Cetrotide, но не в длинном протоколе Lupron.Этот триггерный выстрел также заставит яичник начать процесс овуляции, но поскольку мы не хотим, чтобы овуляция произошла и, таким образом, потеря яйцеклеток в тазу, процедура извлечения яйцеклеток должна произойти до того, как произойдет овуляция. Обычно это запланировано на 35-36 часов с момента выстрела на спусковой крючок.

Мы продолжим это обсуждение в ближайшее время, выпустив следующую часть «Шаг третий и четвертый: извлечение яиц». Спасибо, что присоединились ко мне сегодня!

Эдвард Дж. Рамирес, М.D. F.A.C.O.G.

Медицинский директор, Монтерей Бэй ЭКО

Монтерей, Калифорния

http://www.montereybayivf.com/

Фолликулярная фаза вашего менструального цикла

Первая половина вашего менструального цикла называется фолликулярной фазой. Фолликулы — это мешочки в яичниках, содержащие яйца. Во время этой части вашего цикла фолликулы, выбранные для этого конкретного месяца, начинают расти.

Фолликулярная фаза начинается с первого дня менструации и заканчивается овуляцией.

Фолликулярная фаза также известна как «пролиферативная фаза», потому что повышение уровня эстрадиола (эстрогена) вызывает разрастание и утолщение эндометриальной оболочки матки.

Что происходит во время фолликулярной фазы?

Ранняя фаза

В начале цикла уровень эстрогена и прогестерона низкий. Часть вашего мозга, называемая гипофизом, вырабатывает два гормона: фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛСГ).

ФСГ стимулирует рост яиц в фолликулах.Затем эти фолликулы начинают вырабатывать эстроген в форме эстрадиола. В это время также вырабатываются другие гормоны, такие как ингибин А и ингибин В.

Средняя фаза

Несколько фолликулов вырастут до антральной стадии (что означает, что в фолликуле рядом с яйцеклеткой есть заполненная жидкостью полость). Клетки гранулезы, окружающие фолликулы, размножаются, что приводит к увеличению выработки эстрадиола. Это повышение уровня эстрогена действует как отрицательная обратная связь с гипофизом, поэтому это приводит к снижению уровней как ФСГ, так и ЛГ.

Поздняя фаза

Возникает доминантный фолликул, который продолжает вырабатывать повышенные уровни эстрадиола и ингибина А.

ФСГ вызывает увеличение количества рецепторов ЛГ в яичниках, что, в свою очередь, заставляет яичники вырабатывать факторы роста. Фолликул производит эти факторы роста при подготовке к овуляции (выходу яйцеклетки) и потенциальной имплантации оплодотворенного эмбриона.

Доктор Дженна Фриденталь — научный сотрудник отделения репродуктивной эндокринологии и бесплодия в Reproductive Medicine Associates, Нью-Йорк.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *