Возбудители холеры бактерии: Наука: Наука и техника: Lenta.ru

Содержание

Наука: Наука и техника: Lenta.ru

11 марта 2020 года человечество официально столкнулось с пандемией COVID-2019, вызванной новым коронавирусом. С прошлой пандемии свиного гриппа прошло всего десятилетие, но нынешний патоген куда более опасен, отличается высокой смертностью и вирулентностью. Несмотря на кажущуюся беспрецедентность скорости распространения болезни, истории известно немало инфекций, которые угрожали цивилизации с еще большей силой. Одна из них — холера. «Лента.ру» рассказывает, каким образом это заболевание стало массовым убийцей, от которого не могли спастись ни бедные, ни богатые люди.

Холера — молниеносное заболевание, способное убить человека за сутки. Его возбудитель — бактерия Vibrio cholerae — один из рекордсменов по числу устроенных пандемий. Хотя сейчас холера считается болезнью бедных стран с плохо развитой инфраструктурой (вспышки происходят в Гаити, Ираке, Йемене и африканских странах), в прошлом она свирепствовала в развитой Европе, истребляя вообще всех.

В XIX веке произошло сразу шесть пандемий, которые унесли жизни десятков миллионов людей.

Принято считать, что холера возникла из-за колонизации британцами Южной Азии, а также индустриальной революции, которая проложила микробу дорогу в Европу и Северную Америку. В какой-то степени именно холера стала причиной появления водопровода и канализации, ведь самым эффективным средством против болезни оказалась чистая вода. Появилась новая парадигма: инфекции возникают там, где царит антисанитария и отсутствует гигиена. Правда, в современном мире чистота уже не всегда залог здоровья, и новые патогены, вроде золотистого стафилококка, могут распространяться даже в стерильных больничных боксах.

Холерный вибрион

Холерный вибрион изначально был безобидным микробом и обитал в мангровом лесу Сундарбана (Индия и Бангладеш), где участвовал в симбиотических взаимоотношениях с веслоногими рачками. Долгое время нога человека почти не ступала на эти территории, однако во второй половине XVIII века сюда вторглись английские колонисты. Через сто лет люди расселились почти по всему Сундарбану и жили по колено в солоноватой воде, кишащей зараженными веслоногими. Продолжительные и тесные контакты позволили вибрионам постепенно адаптироваться к организму человека, но они не сразу стали убийцами.

Ключевым приобретением Vibrio cholerae стал токсин, который заставляет кишечник действовать наоборот: высасывать воду с электролитами из тканей самого организма и вызывать диарею и обезвоживание.

Болезнь проявлялась внезапно: у здорового с виду человека начиналась сильная и неукротимая диарея, которая могла застигнуть его дома, на улице или в общественном здании. Из-за потери воды больной буквально высыхал, превращался в живую мумию

В Европе XIX века холеру считали унизительным заболеванием, лишающим человека достоинства и уравнивающим его с нищими и жителями трущоб. Возбудитель холеры загрязнял улицы, питьевую воду, оставался на руках больных и здоровых и — распространялся. Вспышка заболевания шла волной, поражая новые города и буквально стремясь к Европе.

Холера разносилась через транспортные пути и свирепствовала везде, где царила антисанитария, где люди жили бок о бок с фекальными отходами. Роковую роль сыграла и перенаселенность, в частности — разрастание трущоб, где вибрионы без труда проникали в грунтовые воды. Лишь жилищные реформы позволили снизить смертность от холеры и других инфекций в западных странах, однако в бедных регионах планеты до сих пор в ужасных условиях живут сотни миллионов человек.

Оральная регидратация у больного холерой

Человек часто сам играет на руку инфекциям. Вырубка лесов, высокая плотность населения, тесные и долгие контакты с дикими животными — верные способы навлечь на себя смертоносный патоген. Еще одним «смертным грехом» можно назвать невежество и предрассудки.

По иронии судьбы, лекарство от холеры является элементарным. Чтобы организм не погиб от обезвоживания, следует просто восполнять теряемую жидкость. Чистая вода с щепоткой соли снизила бы смертность с 50 до чуть более одного процента

Это средство было предложено в 1830-х годах, во время второй пандемии холеры. Однако подавляющее число медиков XIX века придерживались мнения, что болезнь эта вызывается миазмами — некими «зловонными испарениями». Следовательно, защищать людей, по их мнению, нужно с помощью сильных ароматов. Иногда людей в профилактических целях заставляли нюхать навоз.

Во времена бедствий многие склонны искать виноватых и проявлять открытую враждебность по отношению к иностранцам, врачам, чиновникам и соседям. В этой ситуации неважно, действительно ли объект агрессии стал виновником или причиной эпидемии. В 30-х годах XIX века вслед за холерой шла волна того, что историки назвали «пандемией ненависти». Холерные бунты, которые охватили Россию, Западную Европу и США, стали настоящей массовой истерией и не имели ничего общего с логикой. Даже бесспорно эффективная мера сдерживания болезни — карантин — становился причиной беспорядков.

Материалы по теме

00:11 — 10 января

В Великобритании ходили слухи, что в больницах избавляются от пациентов, «очищая» общество, а врачи убивают больных, чтобы получить трупы для анатомических исследований. Медиков избивали, нападали на больницы и изоляторы, жертвами становились полицейские и чиновники. Люди протестовали и против захоронения умерших от холеры на местных кладбищах.

В Испании жители Мадрида решили, что эпидемию холеры вызвали монахи, отравившие колодцы по политическим причинам, и начали громить церкви и молельные дома. Похожая ситуация возникла в Сан-Франциско, где толпа учинила расправу над представителями ордена францисканцев. Жертвами погромов и кровопролития стали иммигранты, хотя вина во многом лежала на домовладельцах, которые превратили иммигрантские кварталы в плотно заселенные трущобы. Поначалу во всем винили ирландцев, которые, как считалось, принесли холеру в США. Затем общество переключилось на мусульман-паломников, совершающих хадж. В конце XIX века объектом ненависти стали иммигранты из Восточной Европы, в том числе венгры и российские евреи.

Слив нечистот в озеро в Гаити

В 2010 году в Гаити произошла крупнейшая в XXI веке вспышка холеры, которая унесла жизни 4,5 тысячи человек. Санитарная обстановка на Гаити оставляла желать лучшего, источником распространения инфекции стала заполненная нечистотами река. В то же время гаитянцы уверены, что холера попала на остров из-за вооруженных сил ООН, которые намеренно занесли ее из Непала. Результаты исследования генома возбудителя показали, что холера действительно была занесена из Непала, однако с большой долей вероятности переносчик был латентным носителем, который не подозревал, что в нем притаилась холерная бомба. Но этого было достаточно, чтобы на Гаити начались столкновения и массовые беспорядки.

Хотя источник появления холеры на острове в целом определили верно, вспышка достигла масштабов эпидемии из-за других факторов, включая вырубку лесов и гражданскую войну, а также антисанитарию и проблемы местной инфраструктуры в Гаити.

***

В 2006 году эпидемиологи предсказали, что в течение жизни двух следующих поколений возникнет холероподобная пандемия, способная вызвать спад экономики и убить до 200 миллионов людей. Однако тогда ни один из патогенов (ни ВИЧ, ни возбудители гриппа) не дотягивал до уровня холеры. Одним из ключевых показателей способности патогена вызвать эпидемию или пандемию является базовый показатель репродукции (БПР или R0), который равен среднему числу лиц, заражаемых носителем инфекции. Для SARS-CoV-2 БПР оценивается от 2 до 6,47 — почти те же значения, что и для холеры. К счастью, пока COVID-19 не может сравниться со смертоносным кишечным расстройством ни по масштабам, ни по числу смертей.

Профилактика Холеры | Чебоксарский район Чувашской Республики

Холера – особо опасная кишечная инфекция которая вызывается холерным вибрионом. Она поражает преимущественно тонкий кишечник, проявляется жидким стулом, рвотой и интоксикацией. Во время болезни человек теряет до 40 литров жидкости в сутки, что может привести к смертельному обезвоживанию. Ежегодно холерой заболевают 3-5 миллионов людей, около 100-150 тысяч из них погибают.
Распространение холеры. До 1817 года холерой болели только жители Индии, но потом заболевание распространилось за ее пределы. Сегодня оно регистрируется во 90 странах мира. Несмотря на все старания медиков все еще не удается победить холеру. В Африке, Латинской Америке, Юго-Восточной Азии постоянно существуют очаги болезни. Это связано с антисанитарными условиями, в которых живут люди. Высок риск заразиться холерой у туристов, посещающих Гаити, Доминиканскую Республику, Кубу, Мартинику.

Чаще всего болезнь вспыхивает после социальных катаклизмов, землетрясений или других стихийных бедствий. Когда большое количество людей оказывается без питьевой воды. Сточные воды попадают в водоемы, откуда люди берут воду для приготовления пищи и где моются. В таких условиях, если заболевает один человек, то заражаются и другие. Поэтому холера возникает в форме эпидемий, когда заболевают до 200 тысяч человек.                                
Холерный вибрион паразитирует не только в организме человека. Со сточными водами бактерии попадают в водоемы. Там они могут жить в мелких водорослях, ракообразных и моллюсках. Другие животные не болеют холерой.

  • Возбудители холеры любят и пресную, и морскую воду. Они могут месяцами жить и размножаться теплой прибрежной воде.
  • Для того чтобы болезнь развилась, в организм должно попасть не менее миллиона бактерий. Такое количество возбудителя содержится в стакане зараженной воды.
  • Больше других рискуют люди с низкой кислотностью желудочного сока. Дело в том, что холерный вибрион погибает в желудке под воздействием соляной кислоты.
  • Наиболее восприимчивы люди с первой группой крови. Почему так происходит, ученые не установили до сих пор.
  • Дети 3-5 лет заболевают холерой чаще всего. Они чаще взрослых купаются в загрязненных водоемах и при этом рискуют напиться воды. А вот новорожденные, чьи матери переболели холерой, имеют врожденный иммунитет.
  • У 9 из 10 заразившихся людей признаки болезни не развиваются. Может проявиться лишь легкое расстройство пищеварения. Но при этом бактерии живут у них в кишечнике и выделяются с калом.
  • У восприимчивых людей холера может развиться очень быстро и менее чем за сутки вызвать смертельное обезвоживание.
  • Некоторые больные теряют жидкости больше собственного веса, при условии ее своевременного пополнения.
  • Если с первых часов болезни давать человеку по стакану жидкости каждые 15 минут, то за 3-5 дней можно победить холеру даже без лекарств.
  • Последний единичный случай в России был зафиксирован в 2008 году. С тех пор заболевших не выявлено, но сохраняется опасность завоза холеры из других стран.
     Холера известна человечеству не одну тысячу лет. В ХIХ веке она ежегодно забирала миллионы человеческих жизней. Сейчас, благодаря вакцинации и другим мерам, принимаемым ВОЗ, удается резко сократить количество случаев болезни.

Возбудитель холеры

Холерный вибрион – бактерия, имеющая форму изогнутой палочки или запятой. Благодаря подвижному жгутику она может активно передвигаться в жидкости.
Холерный вибрион имеет около 200 разновидностей (серотипов), два из которых вызывают болезнь. Это Vibrio cholerae и Vibrio eltor.
Свойства возбудителя. Бактерии вырабатывают токсины, повреждающие оболочку тонкого кишечника. Именно с действием бактериальных ядов связано нарушение электролитного баланса и обезвоживание.

Токсины, выделяемые холерным вибрионом, обладают такими свойствами:

-разрушают эпителий тонкой кишки;

      -вызывают обильное выделение воды в просвет кишечника. Эта жидкость выводится из           организма в виде испражнений и рвоты.

      -нарушают всасывание солей натрия в кишечнике, что приводит к нарушению водно-солевого баланса и к судорогам.

Оптимальная температура для жизни бактерий 16-40 градусов. Лучше всего холерный вибрион чувствует себя при температуре 36-37°C. Поэтому активно развивается в организме человека и в мелких водоемах в тропических странах. Он устойчив к низким температурам и не гибнет при замораживании.
Холерный вибрион погибает при высушивании, воздействии солнечного света, нагревании до 60°C и выше, при контакте с кислотами. Поэтому люди с повышенной кислотностью желудочного сока редко заболевают. Быстро погибает при обработке кислотами и дезрастворами.

Возбудитель холеры любит щелочную среду. В почве, на загрязненных пищевых продуктах и предметах холерный вибрион может прожить несколько недель. А в воде несколько месяцев.
Жизненный цикл холерного вибриона.

-Бактерии проникают в организм человека с пищей и водой.

      -Часть из них гибнет в желудке, но некоторые преодолевают этот барьер и оказываются в тонком кишечнике.

       -В этой благоприятной щелочной среде вибрион прикрепляется к клеткам слизистой оболочки кишечника. Он не проникает внутрь клеток, а остается на поверхности.

        -Холерные вибрионы размножаются и выделяют токсин СТХ. Этот бактериальный яд связывается с оболочками клеток тонкого кишечника и вызывает изменения в их работе. В клетках нарушается обмен натрия и хлора, что приводит к выделению большого количества ионов воды и солей в просвет кишечника.

        -Обезвоживание клеток приводит к нарушению связи между ними и гибели. Мертвые клетки слизистой выводятся из организма вместе с холерными вибрионами.

Источник инфекции:
 -больной человек;

       -бактерионоситель, который выделяет холерный вибрион, но не имеет признаков болезни.

У больного человека кал и рвотные массы прозрачные и не имеют характерного вида и запаха. Поэтому следы загрязнения остаются незамеченными, что приводит к быстрому распространению инфекции.
Механизм передачи холеры фекально-оральный – больной человек выделяет бактерии при рвоте и поносе. Проникновение в организм здорового человека происходит через рот. Невозможно заразиться холерой воздушно капельным путем.
Пути передачи:
-Водный (основной) – через загрязненную испражнениями воду. В теплых пресных и соленых водоемах, загрязненных сточными водами, концентрация бактерий очень высока. Люди заражаются, употребляя воду и во время купания. Такой водой опасно мыть посуду и продукты.

      -Контактно-бытовой – через предметы, дверные ручки, посуду, белье, загрязненные рвотными массами или испражнениями больного.

     -Пищевой – через устрицы, мидии, креветки, молочные продукты, фрукты, рыбные и мясные блюда не прошедшие тепловую обработку. На продукты бактерии попадают с грязной водой, от носителей или посредством мух.

Риски развития холеры
-Купание в загрязненных водоемах, мытье в них посуды, употребление воды.

     -Употребление в пищу морепродуктов, особенно сырых моллюсков.

     -Посещение стран с низким уровнем жизни, где отсутствуют водопровод и канализация, не   соблюдаются санитарные нормы.

            -Большие лагеря беженцев, где не соблюдается санитария, и нет безопасных источников питьевой воды.

-Войны, социальные катаклизмы, когда появляется дефицит питьевой воды.

           -В группе риска люди, страдающие гастритами с пониженной кислотностью и ахилией  (состояние при котором желудочном соке отсутствует соляная кислота).

 

 

Старейший коллекционный экземпляр холеры оказался незаразным. Но уже устойчивым к пенициллину — за десятки лет до выхода препарата на рынок — Наука

Более ста лет назад очередная пандемия холеры наложилась на Первую мировую войну. В то же время британские исследователи собирали образцы бактерий для Национальной коллекции типовых культур (National Collection of Type Cultures). В частности, в ходе работы они выделили из фекалий одного из солдат, который лечился от холеры в Египте, экземпляр холерного вибриона, который получил номер NCTC30. Это было редкой находкой, поскольку британская армия от этой инфекции практически не пострадала. Тем не менее в работах, посвященных вибриону, упоминается, что у этого солдата был именно «холерный стул», то есть обильный, жидкий, а на поздних стадиях болезни даже прозрачно-белый.

В связи с юбилеем окончания войны новое поколение британских исследователей взялось за реконструкцию событий времен пандемии и подробное изучение разных штаммов холерного вибриона. Они оживили высушенных бактерий NCTC30, секвенировали их геном, вырастили в лаборатории и проверили на устойчивость к антибиотикам. И теперь ученые утверждают, что в образце холерного вибриона содержится какой-то другой микроб.

Во-первых, бактерии NCTC30 оказались не собственно холерным вибрионом (Vibrio cholerae), а каким-то из его родственников. Несмотря на то что эти бактерии больше похожи на него, чем на других вибрионов, они отличаются от других экземпляров Vibrio cholerae из коллекции. Например, у них нет нужных генов для образования жгутика, с помощью которого вибрионы передвигаются. Поэтому NCTC30 оказалось очень сложно культивировать в лаборатории.

Во-вторых, новый загадочный вибрион оказался лишен самых опасных для человека генов, которые отвечают за производство энтеротоксина. Именно он усиливает проницаемость кишечника, в результате чего больной истекает водой изнутри и, если не начать лечение, умирает от обезвоживания. В то же время NCTC30 был выделен именно из «холерического стула» солдата. Исследователи предполагают, что либо эти гены исчезли из генома за сотню лет хранения в пробирке, либо вибрион действовал на организм больного с помощью каких-то других веществ, либо диарею вызвала какая-то другая, побочная инфекция.

Наконец, бактерии NCTC30 оказались слабо подвержены действию пенициллина, а в их геноме авторы работы обнаружили ген устойчивости к антибиотикам пенициллинового ряда. При этом бактерии были выделены в 1916 году, а первые работы о пенициллине появились лишь в 1928-м (а на рынок он вышел и вовсе в 1940-х годах). Исследователи «пересадили» этот ген устойчивости другим бактериям, у которых он тоже отлично прижился. Это может говорить о том, что NCTC30 получили устойчивость от каких-то других линий бактерий с помощью горизонтального переноса, то есть распространение устойчивости к антибиотикам началось задолго до их широкого применения.

 Полина Лосева

Экологические особенности персистенции холерных вибрионов: ретроспективный анализ и современное состояние проблемы | Меньшикова

1. Blake P.A., Wachsmuth K.I., Olsik O. Historical perspectives on pandemic cholera. In: Vibrio cholerae and Cholera: Molecular to Global Perspectives. Washington: American Society for Microbiology Press; 1994: 293-5.

2. Ломов Ю.М., Онищенко Г.Г., Москвитина Э.А., Подосиникова Л.С. Характеристика современного этапа в развитии 7 пандемии холеры. Журнал микробиологии, эпидемиологии и иммунобиологии. 1997; (6): 39-42.

3. Марамович А.С., Урбанович Л.Я., Куликалова Е.С., Шкаруба Т.Т. Роль и значение поверхностных водоемов в становлении и развитии VII пандемии. Эпидемиология и инфекционные болезни. 2009; (2): 21-6.

4. Bik E.M., Bunschoten A.E., Gouw R.D., Mooi F.R. Genesis of the novel epidemic Vibrio cholerae О139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995; 14(2): 209-16. DOI: http://doi.org/10.1002/j.1460-2075.1995.tb06993.x

5. Faruque S.M., Albert M., Mekalanos J.J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Rev. 1998; 62(4): 1301-14.

6. Смирнова Н.И., Агафонов Д.А., Кульшань Т.А., Краснов Я.М., Кутырев В.В. Микроэволюция возбудителя холеры в современный период. Вестник Российской академии медицинских наук. 2014; 69(7-8): 46-53. DOI: http://doi.org/10.15690/vramn.v69i7-8.1109

7. Москвитина Э.А., Мазрухо А.Б., Арешина О.А., Адаменко О.Л., Назаретян А.А., Анисимова Г.Б. Эпидемиологические особенности холеры на современном этапе седьмой пандемии. Эпидемиология и инфекционные болезни. 2014; 19(4): 44-9.

8. Москвитина Э.А., Адаменко О.Л., Кругликов В.Д., Титова С.В., Монахова Е.В., Писанов Р.В. и др. Холера: эпидемиологическая обстановка в мире в 2005–2014 гг. Прогноз на 2015 г. Проблемы особо опасных инфекций. 2015; (1): 18-25.

9. Онищенко Г.Г., Москвитина Э.А., Кругликов В.Д., Титова С.В., Адаменко О.Л., Водопьянов А.С. и др. Эпидемиологический надзор за холерой в России в период седьмой пандемии. Вестник Российской академии медицинских наук. 2015; 70(2): 249-56. DOI: http://doi.org/10.15690/vramn.v70i2.1320

10. Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004; 2(2): 95-108. DOI: http://doi.org/10.1038/nrmicro821

11. Sultana М., Nusrin S., Hasan N.A., Sadique A., Ahmed K.U., Islam A., et al. Biofilms comprise a component of the annual cycle of Vibrio cholerae in the Bay of Bengal estuary. mBio. 2018; 9(2): pii: e00483-18. DOI: http://doi.org/10.1128/mBio.00483-18

12. Yildiz F.H., Visick K.L. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009; 17(3): 109-18. DOI: http://doi.org/10.1016/j.tim.2008.12.004

13. Srivastava D., Waters M. A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J. Bacteriol. 2012; 194(17): 4485-93. DOI: http://doi.org/10.1128/JB.00379-12

14. Lo Scrudato M., Blokesch M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 2012; 8(6): e1002778. DOI: http://doi.org/10.1371/journal.pgen.1002778

15. Matz C., Kjelleberg S. Off the hook — how bacteria survive protozoan grazing. Trends Microbiol. 2005; 13(7): 302-7. DOI: http://doi.org/10.1016/j.tim.2005.05.009

16. Meibom K.L., Li X.B., Nielsen A.T., Wu C.Y., Roseman S., Schoolnik G.K. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA. 2004; (101): 2524-9. DOI: http://doi.org/10.1073/pnas.0308707101

17. Hunt D.E., Gevers D., Vahora N.M., Polz M.F. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. Microbiol. 2008; 74(1): 44-51. DOI: http://doi.org/10.1128/AEM.01412-07

18. Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. 2006; 31(7): 603-32. DOI: http://doi.org/10.1016/j.progpolymsci.2006.06.001

19. Kirn T.J., Jude B.A., Taylor R.K. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005; 438(7069): 863-6. DOI: http://doi.org/10.1038/nature04249

20. Stauder M., Vezzulli L., Pezzati E., Repetto B., Pruzzo C. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesions. Microbiol. Rep. 2010; 2(1): 140-4. DOI: http://doi.org/10.1111/j.1758-2229.2009.00121.x

21. Chiavelli D.A., Marsh J.W., Taylor R.K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 2001; 67(7): 3220-5. DOI: http://doi.org/10.1128/AEM.67.7.3220-3225.2001

22. Reguera G., Kolter R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 2005; 187(10): 3551-5. DOI: http://doi.org/10.1128/JB.187.10.3551-3555.2005

23. Watnick P.I., Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999; 34(3): 586-95. DOI: http://doi.org/10.1046/j.1365-2958.1999.01624.x

24. Watnick P.I., Lauriano C.M., Klose K.E., Croal L., Kolter R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 2001; 39(2): 223-35. DOI: http://doi.org/10.1046/j.1365-2958.2001.02195.x

25. Fong J.C., Karplus K., Schoolnik G.K., Yildiz F.H. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J. Bacteriol. 2006; 188(3): 1049-59. DOI: http://doi.org/10.1128/JB.188.3.1049-1059

26. Morris J.G., Sztein M.B., Rice E.W., Nataro J.P., Losonsky G.A., Panigrahi P., et al. Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J. Infect. Dis. 1996; 174(6): 1364-8. DOI: http://doi.org/10.1093/infdis/174.6.1364

27. Yildiz F.H., Schoolnik G.K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA. 1999; 96(7): 4028-33. DOI: http://doi.org/10.1073/pnas.96.7.4028

28. Wai S.N., Mizunoe Y., Takade A., Kawabata S.I., Yoshida S.I. Vibrio cholerae O1 Strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 1998; 64(10): 3648-55.

29. Sun S., Kjelleberg S., McDougald D. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS One. 2013; 8(2): e56338. DOI: http://doi.org/10.1371/journal.pone.0056338

30. Ali A., Rashid M.H., Karaolis D.K. High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl. Environ. Microbiol. 2002; 68(11): 5773-8. DOI: http://doi.org/10.1128/AEM.68.11.5773-5778.2002

31. Zettler E.R., Mincer T.J., Amaral-Zettler L.A. Life in the «plastisphere»: microbial communities on plastic marine debris. Environ. Sci. Technol. 2013; 47(13): 7137-46. DOI: http://doi.org/10.1021/es401288x

32. Eriksen M., Lebreton L.C.M., Carson H.S., Thiel M., Moore C.J., Borerro J.C., et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 2013; 9(12): e111913. DOI: http://doi.org/10.1371/journal.pone.0111913

33. Водопьянов С.О., Водопьянов А.С., Олейников И.П., Лысова Л.К., Титова С.В. Анализ внутривидовой конкуренции штаммов Vibrio cholerae c помощью INDEL-маркеров. Здоровье населения и среда обитания. 2016; (4): 35-8.

34. Водопьянов С.О., Титова С.В., Водопьянов А.С., Олейников И.П., Клешнина О.В., Москвитина Э.А. Пластисфера как возможный фактор глобального распространения V. cholerae (материал для подготовки лекции). Инфекционные болезни: новости, мнения, обучение. 2018; 7(3): 109-13. DOI: http://doi.org/10.24411/2305-3496-2018-13016

35. Colwell R.R. Viable but nonculturable bacteria: a survival strategy. J. Infect. Chemother. 2006; 6(2): 121-5. DOI: http://doi.org/10.1007/PL00012151

36. Oliver J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010; 34(4): 415-25. DOI: http://doi.org/10.1111/j.1574-6976.2009.00200.x

37. Mishra A., Taneja N., Sharma M. Viability kinetics, induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio cholerae O1 in freshwater microcosm. J. Appl. Microbiol. 2012; 112(5): 945-53. DOI: http://doi.org/10.1111/j.1365-2672.2012.05255

38. Bari S.M.N., Roky M.K., Mohiuddin M., Kamruzzaman M., Mekalanos J.J., Faruque S.M. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc. Natl. Acad. Sci. USA. 2013; 110(24): 9926-31. DOI: http://doi.org/10.1073/pnas.1307697110

39. Buerger S., Spoering A., Gavrish E., Leslin C., Ling L., Epstein S.S. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl. Environ. Microbiol. 2012; 78(9): 3221-8. DOI: http://doi.org/10.1128/AEM.07307-11

40. Lipp E.K., Huq A., Colwell R.R. Effects of global climate on infectious disease: the cholera model. Clin. Microbiol. Rev. 2002; 15(4): 757-70. DOI: http://doi.org/10.1128/cmr.15.4.757-770.2002

41. Core Writing Team; Pachauri R.K., Meyer L.A., eds. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.

42. Blokesch M., Schoolnik G.K. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog. 2007; 3(6): e81. DOI: http://doi.org/10.1371/journal.ppat.0030081

43. Shikuma N.J., Yildiz F.N. Identification and characterization of OscR, transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J. Bacteriol. 2009; 191(13): 4082-96. DOI: http://doi.org/10.1128/JB.01540-08

44. Montilla R., Chowdhury M.A., Huq A., et al. Serogroup conversion Vibrio cholerae non-O1 to Vibrio cholerae O1: effect of growth cells, temperature, and salinity. Can. J. Microbiol. 1996; 42(1): 87-93. DOI: http://doi.org/10.1139/m96-014

45. Coyne V.E., Al-Harthi L. Induction of melanin biosynthesis in Vibrio cholerae. Appl. Environ. Microbiol. 1992; 58(9): 2861-5.

46. Valeru S.P., Rompikuntal P.K., Ishikawa T., Vaitkevicius K., Sjöling A., Dolganov N., et al. Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect. Immun. 2009; 77(3): 935-42. DOI: http://doi.org/10.1128/IAI.00929-08

47. Jueterbock A., Tyberghein L., Verbruggen H., Coyer J.A., Olsen J.L., Hoarau G. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol. Evol. 2013; 3(5): 1356-73. DOI: http://doi.org/10.1002/ece3.541

48. Mutreja A., Kim D.W., Thomson N.R., Connor T.R., Lee J.H., Kariuki S., et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011; 477(7365): 462-5. DOI: http://doi.org/10.1038/nature10392

49. Марков Е.Ю., Куликалова Е.С., Урбанович Л.Я., Вишняков В.С., Балахонов С.В. Хитин и продукты его гидролиза в экологии Vibrio cholerae (обзор). Биохимия. 2015; 80(9): 1334-43. DOI: http://doi.org/10.1134/S0006297915090023

50. Chin C.S., Sorenson J., Harris J.B., Robins W.P., Charles R.C., Jean-Charles R.R., et al The origin of the Haitian cholera outbreak strain. Engl. J. Med. 2011; 364(1): 33-42. DOI: http://doi.org/10.1056/NEJMoa1012928

51. Савельев В.Н., Савельева И.В., Бабенышев Б.В., Куличенко A.Н. Эволюция возбудителя и клинико-эпидемиологические особенности современной холеры Эль-Тор. Эпидемиология и инфекционные болезни. 2012; (5): 31-5.

52. Онищенко Г.Г., Попова А.Ю., Кутырев В.В., Смирнова Н.И., Щербакова С.А., Москвитина Э.А. и др. Актуальные проблемы эпидемиологического надзора, лабораторной диагностики и профилактики холеры в Российской Федерации. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; (1): 89-101.

53. Son M.S., Megli C.J., Kovacikova G., Qadri F., Taylor R.K. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J. Clin. Microbiol. 2011; 49(11): 3739-49. DOI: http://doi.org/10.1128/JCM.01286-11

54. Москвитина Э.А., Тюленева Е.Г., Самородова А.В., Кругликов В.Д., Титова С.В., Иванова С.М. и др. Эпидемиологическая обстановка по холере в мире и России в 2007–2016 гг., прогноз на 2017 г. Проблемы особо опасных инфекций. 2017; (1): 13-20. DOI: http://doi.org/10.21055/0370-1069-2017-1-13-20

55. Титова С.В., Кругликов В.Д., Ежова М.И., Водопьянов А.С., Архангельская И.В., Водопьянов С.О. и др. Анализ динамики выделения и биологических свойств штаммов V. cholerae О1 El-Tor, изолированных из водных объектов на территории Ростовской области в 2003–2014 гг. Здоровье населения и среда обитания. 2015; (2): 39-41.

56. Русская семерка. Рощепий И. Каким будет климат в средней полосе России через 20 лет. Available at: https://russian7.ru/post/kakim-budet-klimat-v-sredney-polose-ro/

57. Левченко Д.А., Кругликов В.Д., Архангельская И.В., Ежова М.И., Москвитина Э.А., Титова С.В. Анализ результатов мониторинга холерных вибрионов в объектах окружающей среды на административных территориях России с помощью ГИС «Холера 1989–2014». Проблемы особо опасных инфекций. 2017; (4): 99-102. DOI: http://doi.org/10.21055/0370-1069-2017-4-99-102

58. Меньшикова Е.А., Архангельская И.В., Левченко Д.А., Курбатова Е.М., Кругликов В.Д., Титова С.В. Влияние температурных флуктуаций воды поверхностных водоемов города Ростова-на-Дону на циркуляцию холерных вибрионов. Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова. 2014; 14(4): 14-20.

Публикации в СМИ

Холера — антропонозное, особо опасное острое карантинное инфекционное заболевание, протекающее с тяжёлой диареей, рвотой, приводящими к обезвоживанию организма.

Этиология. Возбудитель — подвижная грамотрицательная бактерия Vibrio cholerae (холерный вибрион, или запятая Коха). Выделяют 3 типа возбудителей — Vcholerae asiaticae (возбудитель классической холеры), V. cholerae eltor (возбудитель холеры Эль-Тор) и серовар О139 (Бенгал) (возбудитель холеры в Юго-Восточной Азии). Подвижность бактерий весьма выражена, и её определение (методом висячей или раздавленной капли) — важный диагностический признак. Деление клеток происходит очень быстро и на щелочной пептонной воде возбудитель даёт видимый невооружённым глазом рост уже через 6 ч. Быстро погибает при кипячении в кислой среде.

Эпидемиология. Холера — типичная кишечная инфекция. Единственный природный резервуар — больные и бактерионосители, основные пути передачи — водный и пищевой, реже контактно-бытовой. Факторы передачи: пищевые продукты, вода, объекты окружающей среды. Определённую роль играют мухи, способные переносить возбудитель с испражнений на пищевые продукты. Несмотря на то, что выделение возбудителя в окружающую среду происходит в течение короткого времени, большое число скрытых форм поддерживает циркуляцию возбудителя. Единственный исторический эндемичный очаг холеры — дельта Ганга и Брахмапутры. Выделяют 2 типа эпидемий холеры: эпидемии-вспышки с едиными источником инфекции и путями распространения, характеризующихся одномоментным появлением большого числа больных, и вялотекущие эпидемии с небольшой постоянной заболеваемостью и трудно выявляемыми путями передачи возбудителя. В большинстве случаев подъём заболеваемости наблюдают в тёплое время года.

Патогенез. В организме человека большая часть вибрионов погибает под действием кислой среды желудка, и лишь их небольшая часть достигает тонкой кишки. В ответ на проникновение бактерий кишечный эпителий выделяет щелочной секрет, насыщенный жёлчью (жёлчь — идеальная среда для размножения возбудителя). Клинические проявления холеры обусловлены образованием экзотоксинов • Экзотоксин (холероген) — термолабильный белок, молекула токсина включает 2 компонента: компонент В взаимодействует с моносиаловым ганглиозидным рецептором, что обусловливает проникновение в клетку компонента А. Компонент А составляют субъединица А1 (активный центр) и субъединица А2, связывающая оба компонента. Субъединица А1 катализирует рибозилирование гуанилзависимого компонента аденилат циклазы, приводит к повышению внутриклеточного содержания циклического 3,5-аденозинмонофосфата и выходу жидкости и электролитов из клеток либеркюновых желёз в просвет кишечника. Токсин не способен реализовать своё действие на любых других клетках. Бактерии серовара О139 также продуцируют экзотоксин с аналогичными свойствами, но в меньших количествах; токсинообразование кодируют как хромосомные, так и плазмидные гены • Определённую роль в поражениях, вызываемых биотипом Эль-Тор, играют гемолизины.

Клиническая картина

• Инкубационный период продолжается от нескольких часов до 5 дней (чаще 2–3 дня).

• У большинства инфицированных лиц заболевание протекает бессимптомно, либо возможна лёгкая диарея. Соотношение тяжёлых поражений к количеству стёртых проявлений для классической холеры — 1:5–1:10, для холеры Эль-Тор — 1:25–1:100.

• Клинически выраженные случаи характеризуются общим недомоганием, рвотой и развитием выраженного диарейного синдрома, отсутствием интоксикации (температура тела не повышается). Для последнего характерно выделение значительного количества (до 10 л/сут) водянистых, бесцветных испражнений. Другая характерная черта — сладковатый, рыбный (но не фекальный) запах испражнений.

• Тяжёлые случаи болезни обусловлены развитием обезвоживания: у больных резко снижается диурез с развитием ОПН. Характерна охриплость голоса или афония. Ведущий патогенетический фактор — гиповолемия и дефицит электролитов. Как следствие развиваются артериальная гипотензия, коронарная недостаточность, нарушение сознания и гипотермия. Подобное состояние определяют как холерный алгид (Алгид — симптомокомплекс, обусловленный обезвоживанием организма (потеря натрия хлорида, калия, бикарбонатов): гипотермия, гемодинамические расстройства, анурия, тонические судороги, выраженная одышка). Отмечают характерное проявление — facies hippocratica (запавшие глаза, заострённые черты лица с резко выступающими скулами). Продолжительность проявлений зависит от своевременно начатого, адекватно проводимого лечения и варьирует от нескольких часов до нескольких дней. При отсутствии лечения летальность больных в алгидной стадии может достигать 60%.

• Выздоровление сопровождается выработкой непродолжительного иммунитета, нередко отмечают случаи повторного заражения.

Методы исследования • Выделение и идентификация возбудителя; цели исследований — выявление больных и бактерионосителей, установление окончательного диагноза при исследовании погибших, контроль за эффективностью лечения больных и санации носителей, контроль над объектами внешней среды и эффективностью дезинфекционных мероприятий. Материалы для исследования — испражнения, рвотные массы, жёлчь, секционный материал (фрагменты тонкой кишки и жёлчный пузырь), постельное и нательное бельё, вода, ил, сточные воды, гидробионты, смывы с объектов окружающей среды, пищевые продукты, мухи и др. Наиболее объективные результаты даёт исследование проб, взятых до начала антибактериальной терапии • Анализ крови — признаки дегидратации (ацидоз, гипокалиемия, гипонатриемия, гипохлоремия, гипогликемия, полицитемия, незначительный нейтрофильный лейкоцитоз).

Дифференциальную диагностику проводят с различными тяжёлыми диареями (например, вызванными видами Salmonella, Ecoli или энтеропатогенными вирусами), отравлением грибами, мышьяком.

Лечение • Этиотропная терапия •• Взрослым и детям старше 8 лет — доксициклин по 300 мг 1 р/сут, либо по 100 мг 2 р/сут или тетрациклин по 50 мг/кг/сут в течение 3 дней. В качестве альтернативного препарата возможно использование ципрофлоксацина в среднетерапевтической дозировке •• Детям до 8 лет — ко-тримоксазол (по 4 мг/кг триметоприма и 20 мг/кг сульфаметоксазола каждые 12 ч) или фуразолидон 5–10 мг/кг/сут в 4 приёма через 6 ч в течение 3 дней •• Беременным — фуразолидон по 100 мг 4 р/сут в течение 7–10 дней • Возмещение потери жидкости и электролитов в соответствии со степенью обезвоживания больного •• При лёгкой и среднетяжёлой формах — пероральная регидратация (р-р регидратационной соли [натрия хлорида 3,5 г, калия хлорида 1,5 г, глюкозы 20 г, тринатрия цитрата 2,9 г в 1 л воды], глюкосолана или цитраглюкосолана) •• При тяжёлой форме — введение солевых р-ров в/в (натрия ацетат+натрия хлорид+калия хлорид).

Синонимы • Азиатская холера • Эпидемическая холера • Диарея рисовым отваром

МКБ-10 • A00 Холера

«Правильная» кишечная микрофлора защищает даже от холеры

На рисунке – изображение модели холерного вибриона из Национального музея естественной истории Смитсоновского института (США)

: 02.07.2020

Человечеству пока не удалось справиться не только с опасными вирусными инфекциями, но и со многими бактериальными. К примеру, до сих пор в мире около 4 млн человек ежегодно заболевают холерой – без лечения это заболевание может привести к смерти буквально за несколько часов. Но оказалось, что помочь человеку противостоять холере могут его собственные кишечные бактерии 

«Домашние» бактерии, обитающие на поверхности и внутри человеческого тела и составляющие наш микробиом, являются одной из важных линий «обороны» против инфекционных агентов. Эти бактерии синтезируют соединения, которые стимулируют и поддерживают местный и гуморальный иммунитет. Кроме того, «домашние» бактерии конкурируют с болезнетворными, проникающими в организм из внешней среды, выделяя антимикробные вещества. 

А недавно ученые из Калифорнийского университета в Риверсайде (США) на примере возбудителя холеры – серьезнейшего диарейного заболевания, выяснили, что кишечный микробиом может напрямую защитить своего «хозяина» от инфекции.

Исследователи сравнили микробиомы кишечника здоровых американцев и жителей Бангладеш, где холера – распространенное заболевание. Оказалось, что микробиом последних отличался большим разнообразием, причем чаще всего встречалось одно, довольно характерное состояние микробного дисбаланса. 

Такой дисбаланс может формироваться вследствие частых кишечных заболеваний, в результате которых человек, например, плохо питается, что снижает устойчивость к инфекциям, или некорректно применяет антимикробные препараты. А с другой стороны, такой дисбаланс сам может быть окном уязвимости к холере.

На основе этих данных ученые собрали «в пробирке» два модельных микробиома: один – «здорового человека», второй – характерный для людей с микробным дисбалансом, проживающих в «холерном» регионе. Эти наборы микроорганизмов были введены лабораторным мышам, которых затем заразили возбудителем холеры. Животные со «здоровым» микробиомом оказались более устойчивы к колонизации патогеном. Возник вопрос: какие же микроорганизмы оказали такое выраженное защитное действие?

Известно, что холерный вибрион «на свободе» живет в водных резервуарах, и при попадании в тонкий кишечник млекопитающих ему приходится приспосабливаться к иной среде обитания. А это требует скоординированной регуляции генов бактерии. Активатором генов вирулентности возбудителя, благодаря которым он прикрепляется к стенкам кишечника, служит таурохолат натрия, натриевая соль одной из желчных кислот – важного компонента желчи.

Оказалось, что кишечная бактерия Blautia obeum производит фермент, который расщепляет таурохолат, в результате чего патогенность возбудителя холеры снижается. В микробных сообществах кишечных бактерий, где численность холерного вибриона была выше, были обнаружены более низкие концентрации этого фермента, что и служило «мерилом» численности B. obeum

Таким образом, если удастся увеличить численность B. obeum в кишечнике людей, проживающих в неблагополучных по холере регионах, это может стать «естественной» профилактической мерой.

Кстати сказать, сейчас ученые проводят аналогичные исследования и в отношении нового коронавируса SARS-CoV-2. Они пытаются понять, как меняется микробиом человека при COVID-19, и как это влияет на устойчивость к болезни.

Фото: https://www.flickr.com

: 02.07.2020

ИНФЕКЦИОННЫЕ ЗАБОЛЕВАНИЯ. ПРАВИЛА ПОВЕДЕНИЯ НАСЕЛЕНИЯ

ИНФЕКЦИОННЫЕ ЗАБОЛЕВАНИЯ. ПРАВИЛА ПОВЕДЕНИЯ НАСЕЛЕНИЯ

По данным Всемирной организации здравоохранения, ежегодно на земном шаре переносят инфекционные заболевания свыше 1 млрд. человек. В течение короткого срока могут заразиться большие массы людей. Так, холера Эль-Тор, начавшись в 1960 г. в Индонезии, к 1971 г. охватила все страны мира. Четвертая пандемия (эпидемия, охватывающая группу стран, континентов) гриппа за два года (1968-1970) поразила около 2 млрд. человек всех континентов и унесла около 1,5 млн. жизней. Нет-нет да и появляются больные чумой, холерой, бру­целлезом. Все еще высок уровень заболеваемости острой дизентерией, брюш­ным тифом, дифтерией, вирусным гепатитом, сальмонеллезом, гриппом. Осо­бенно опасно их возникновение на предприятиях, в учебных заведениях, воин­ских коллективах, где один может заразить всех.

Вот почему очень важно знать признаки инфекционных заболеваний, пути их распространения, способы предупреждения и правила поведения.

ВОЗНИКНОВЕНИЕ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Ноябрь 1990 г. Таежный город нефтедобытчиков Лангепас (Ханты-Мансий­ский автономный округ) превратился в огромный лазарет. В больницу с кишеч­ной инфекцией обратилось свыше 2000 человек, более 100 были госпитализи­рованы, из которых 13 находились в очень тяжелом состоянии. В чем же причи­на? В том, что водопроводные и канализационные трубы были проложены ря­дом, в одной траншее. В результате в водопроводную сеть стали проникать фе­кальные воды.

Другой пример. В кемпинге «Родник», расположенном на окраине Ставрополя, 45 его поселенцев заболели холерой. Сложилась критическая ситуация, ведь в кемпинге за короткое время побывало 733 человека. Их надо было найти, изо­лировать и вылечить. Носителей холерного вибриона обнаруживали в Барнау­ле, Перми, Краснодаре и многих других городах. Только чрезвычайные меры предотвратили распространение инфекции. Виной всему оказался родник близ кемпинга. Оползневые явления повредили канализационную сеть, и нечистоты попали в ключевую воду.

Надо помнить, что возбудители инфекционных заболеваний, проникая в орга­низм, находят там благоприятную среду для развития. Быстро размножаясь, они выделяют ядовитые продукты (токсины), которые разрушают ткани, что приво­дит к нарушению нормальных процессов жизнедеятельности организма. Бо­лезнь возникает, как правило, через несколько часов или дней с момента зара­жения. В этот период, называемый инкубационным, идет размножение микро­бов и накопление токсических веществ без видимых признаков заболевания.

Носитель их заражает окружающих или обсеменяет возбудителями различные объекты внешней среды.

Различают несколько путей распространения: контактный, когда происходит прямое соприкосновение больного со здоровым человеком; контактно-бытовой

— передача инфекции через предметы домашнего обихода (белье, полотенце, посуда, игрушки), загрязненные выделениями больного; воздушно-капельный

— при разговоре, чихании; водный. Многие возбудители сохраняют жизнеспо­собность в воде, по крайней мере, несколько дней. В связи с этим передача ос­трой дизентерии, холеры, брюшного тифа может происходить через нее весьма широко. Если не принимать необходимых санитарных мер, водные эпидемии могут привести к печальным последствиям.

А сколько инфекционных заболеваний передается с пищевыми продуктами? В Тульской области было выявлено пять случаев заболевания бруцеллезом. При­чина? Пренебрежение ветеринарными требованиями и нормами: 65 голов круп­ного рогатого скота, больного бруцеллезом, совхоз направил на мясокомбинат, от продукции которого заразились люди,

На сегодня ведущее значение приобрел сальмонеллез. Заболеваемость им увеличилась в 25 раз. Это одно из распространенных кишечно-желудочных за­болеваний. Разносчиками могут являться различные животные: рогатый скот, свиньи, лошади, крысы, мыши и домашняя птица, особенно утки и гуси. Воз­можно такое заражение от больного человека или носителя сальмонелл.

Большую опасность для окружающих представляют больные, которые своев­ременно не обращаются к врачу, так как многие инфекционные болезни проте­кают легко. Но при этом происходит интенсивное выделение возбудителей во внешнюю среду.

Сроки выживания возбудителей различны. Так, на гладких поверхностях цел­лулоидных игрушек дифтерийная палочка сохраняется меньше, чем на мягких игрушках из шерсти или другой ткани. В готовых блюдах, в мясе, молоке возбу­дители могут жить долго. В частности, молоко является благоприятной пита­тельной средой для брюшно-тифозной и дизентерийной палочек.

В организме человека на пути проникновения болезнетворных микробов сто­ят защитные барьеры — кожа, слизистая оболочка желудка, некоторые состав­ные части крови. Сухая, здоровая и чистая кожа выделяет вещества, которые приводят к гибели микробов. Слизь и слюна содержат высокоактивный фер­мент—лизоцим, разрушающий многих возбудителей. Оболочка дыхательных путей также хороший защитник. Надежный барьер на пути микробов — желу­док. Он выделяет соляную кислоту и ферменты, которые нейтрализуют боль­шинство возбудителей заразных болезней. Однако если человек пьет много воды, то кислотность, разбавляясь, снижается. Микробы в таких случаях не гибнут и с пищей проникают в кишечник, а оттуда в кровь.

Необходимо отметить, что защитные силы более эффективны в здоровом, за­каленном организме. Переохлаждение, несоблюдение личной гигиены, травма, курение, радиация, прием алкоголя резко снижают его сопротивляемость.

РАСПОЗНАВАНИЕ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Наиболее типичными признаками инфекционного заболевания являются: оз­ноб, жар, повышение температуры. При этом возникает головная боль, боль в мышцах и суставах, недомогание, общая слабость, разбитость, иногда тошнота, рвота, нарушается сон, ухудшается аппетит. При тифе, менингококковой ин­фекции появляется сыпь. При гриппе и других респираторных заболеваниях — чихание, кашель, першение в горле. Ангина и дифтерия вызывают боли в горле при глотании. При дизентерии — понос. Рвота и понос — признаки холеры и сальмонеллеза.

Рассмотрим кратко наиболее часто встречающиеся инфекции, пути их рас­пространения и способы предупреждения.

Инфекции дыхательных путей — наиболее многочисленные и самые рас­пространенные заболевания. Ежегодно ими перебаливает до 15-20% всего на­селения, а в период эпидемических вспышек грип­па — до 40%. Возбудители локализуются в верх­них дыхательных путях и распространяются воз­душно-капельным способом. Микробы попадают в воздух со слюной и слизью при разго­воре, чихании, кашле больного (наибольшая кон­центрация на расстоянии 2-3 м от больного). Круп­ные капли, содержащие возбудителей, довольно быстро оседают, подсыхают, образуя микроскопи­ческие ядрышки. С пылью они вновь поднимают­ся в воздух и переносятся в другие помещения. При их вдыхании и происходит заражение. При высо­кой влажности воздуха в помещениях, недостаточ­ном их проветривании и других нарушениях санитарно-гигиенических правил возбудители сохраняются во внешней среде дольше.

При стихийном бедствии и крупных катастрофах обычно происходит скапли­вание людей, нарушаются нормы и правила общежития, что обусловливает мас­совость заболевания гриппом, дифтерией, ангиной, менингитом.

Грипп. Его вирус в течение короткого времени может поразить значительное количество людей. Он устойчив к замораживанию, но быстро погибает при на­гревании, высушивании, под действием дезинфицирующих средств, при ульт­рафиолетовом облучении. Инкубационный период продолжается от 12 ч до 7 суток. Характерные признаки болезни — озноб, повышение температуры, сла­бость, сильная головная боль, кашель, першение в горле, насморк, саднение за грудиной, осипший голос. При тяжелом течении возможны осложнения — пнев­мония, воспаление головного мозга и его оболочек.

Дифтерия характеризуется воспалительным процессом в глотке и токсическим поражением сердечно-сосудистой и нервной систем. Возбудитель болезни— дифтерийная палочка. Входными воротами инфекции чаще всего являются сли­зистые оболочки зева, гортани и носа. Передается воздушно-капельным путем.

Инкубационный период от 5 до 10 дней. Наиболее характерное проявление бо­лезни—образование пленок в верхних дыхательных путях. Опасность для жизни представляет токсическое поражение ядами дифтерийных палочек организма больного. При их распространении может возникнуть нарушение дыхания.

Холера, дизентерия, брюшной тиф, сальмонеллез, инфекционный гепа­тит — все эти острые кишечные инфекции занимают второе место после воз­душно-капельных. При этой группе заболеваний болезнетворные микро­организмы проникают внутрь с проглатываемой пищей или водой.

Разрушение водопроводных и канализационных сетей, низкая санитарная культура, беспечность и неосмотрительность в использовании открытых водо­емов приводят к возникновению этих эпидемий.

Острая бактериальная дизентерия. Возбудители—дизентерийные бактерии, которые выделяются с испражнениями больного. Во внешней среде они сохра­няются 30-45 дней. Инкубационный период — до 7 дней (чаще 2-3 дня). Забо­левание сопровождается повышением температуры, ознобом, жаром, общей сла­бостью, головной болью. Начинается со схваткообразных болей в животе, с частого жидкого стула, в тяжелых случаях — с примесью слизи и крови. Иногда бывает рвота.

Брюшной тиф. Источник инфекции — больные или бактерионосители. Па­лочка брюшного тифа и паратифов выделяется с испражнениями и мочой. В почве и воде они могут сохраняться до четырех месяцев, в испражнениях до 25 дней, на влажном белье — до двух недель. Инкубационный период продолжает­ся от одной до трех недель. Заболевание развивается постепенно: ухудшается самочувствие, нарушается сон, повышается температура. На 7-8-й день появля­ется сыпь на коже живота, грудной клетке. Заболевание длится 2-3 недели и может осложниться кишечным кровотечением или прободением кишечника на месте одной из многочисленных образовавшихся при этом язв.

ОСНОВЫ ЗАЩИТЫ И ПРАВИЛА ПОВЕДЕНИЯ НАСЕЛЕНИЯ

Инфекционные заболевания возникают при трех основных факторах: наличии источника инфекции, благоприятных условиях для распространения возбудите­лей и восприимчивого к заболеванию человека. Если исключить из этой цепи хотя бы одно звено, эпидемический процесс прекращается. Следовательно, це­лью предупреждающих мероприятий является воздействие на источник инфек­ции, чтобы уменьшить обсеменение внешней среды, локализовать распростра­нение микробов, а также повысить устойчивость населения к заболеваниям.

Поскольку главным источником инфекции является больной человек или бактерионоситель, необходимо раннее выявление, немедленная их изоляция и гос­питализация. При легком течении заболевания люди, как правило, поздно обра­щаются к врачу или совсем этого не делают. Помочь в скорейшем выявлении таких больных могут подворные обходы.

Помещения, где находится больной, надо регулярно проветривать. Для него выделить отдельное помеще­ние или отгородить ширмой. Обслуживающему персоналу обязательно носить защитные марлевые маски.

Важное значение для пред­упреждения развития инфек­ционных заболеваний имеет экстренная и специфическая профилактика.

Экстренная профилактика проводится при возникнове­нии опасности массовых забо­леваний, но когда вид возбу­дителя еще точно не опреде­лен. Она заключается в приеме населением антибиотиков, сульфаниламидных и других лекарственных препаратов. Средства экстренной профилактики при своевременном их использовании по предусмотренным заранее схемам позво­ляют в значительной степени предупредить инфекционные заболевания, а в слу­чае их возникновения — облегчить их течение.

Специфическая профилактика — создание искусственного иммунитета (не­восприимчивости) путем предохранительных прививок (вакцинации)— прово­дится против некоторых болезней (натуральная оспа, дифтерия, туберкулез, полиомиелит и др.) постоянно, а против других — только при появлении опас­ности их возникновения и распространения.

Повысить устойчивость населения к возбудителям инфекции возможно пу­тем массовой иммунизации предохранительными вакцинами, введением спе­циальных сывороток или гамма-глобулинов. Вакцины представляют собой уби­тых или специальными методами ослабленных болезнетворных микробов, при введении которых в организм здоровых людей у них вырабатывается состояние невосприимчивости к заболеванию. Вводятся они разными способами: подкож­но, накожно, внутрикожно, внутримышечно, через рот (в пищеварительный тракт), путем вдыхания.

Для предупреждения и ослабления инфекционных заболеваний в порядке са­мопомощи и взаимопомощи рекомендуется использовать средства, содержащи­еся в аптечке индивидуальной АИ-2.

При возникновении очага инфекционного заболевания в целях предотвращения распространения болезней объявляется карантин или обсервация.

Карантин вводится при возникновении особо опасных болезней (оспы, чумы, холеры и др.). Он может охватывать территорию района, города, группы населенных пунктов.

Карантин представляет собой систему режимных, противоэпидемических и лечебно-профилактических мероприятий, направленных на полную изоляцию очага и ликвидацию болезней в нем.

Основными режимными ме­роприятиями при установлении карантина являются: охрана оча­га инфекционного заболевания, населенных пунктов в нем, инфек­ционных изоляторов и больниц, контрольно-передаточных пунк­тов. Запрещение входа и выхода людей, ввода и вывода животных, а также вывоза имущества. Запрещение транзитного проезда транспорта, за исключением железнодорожного и водного. Разобщение населе­ния на мелкие группы и ограничение общения между ними. Организация дос­тавки по квартирам (домам) населению продуктов питания, воды и предметов первой необходимости. Прекращение работы всех учебных заведений, зрелищ­ных учреждений, рынков. Прекращение производственной деятельности пред­приятий или перевод их на особый режим работы.

Противоэпидемические и лечебно-профилактические мероприятия в условиях карантина включают: использование населением медицинских препаратов, за­щиту продовольствия и воды, дезинфекцию, дезинсекцию, дератизацию, сани­тарную обработку, ужесточенное соблюдение правил личной гигиены, актив­ное выявление и госпитализацию инфекционных больных.

Обсервация вводится в том случае, если вид возбудителя не является особо опасным. Цель обсервации — предупредить распространение инфек­ционных заболеваний и ликвидировать их. Для этого проводятся по существу те же лечебно-профилактические мероприятия, что и при карантине, но при обсервации менее строги изоляционно-ограничительные меры.

Срок карантина и обсервации определяется длительностью максимального инкубационного периода заболевания, исчисляемого с момента изоляции пос­леднего больного и окончания дезинфекции в очаге.

Люди, находящиеся на территории очага инфекционного заболевания, дол­жны для защиты органов дыхания пользоваться ватно-марлевыми повязками. Для кратковременной защиты рекомендуется использовать свернутый в не­сколько слоев платок или косынку, полотенце или шарф. Не помешают и за­щитные очки. Целесообразно пользоваться накидками и плащами из синтети­ческих и прорезиненных тканей, пальто, ватниками, резиновой обувью, обу­вью из кожи или ее заменителей, кожаными или резиновыми перчатками (ру­кавицами).

Защита продовольствия и воды заключается главным образом в создании ус­ловий, исключающих возможность их контакта с зараженной атмосферой. На­дежными средствами защиты могут быть все виды плотно закрывающейся тары.

Водой из водопровода и артезианских скважин разрешается пользоваться сво­бодно, но кипятить ее обязательно.

В очаге инфекционною заболевания не обойтись без дезинфекции, де­зинсекции и дератизации.

Дезинфекция проводится с целью уничтожения или удаления микробов и иных возбудителей с объектов внешней среды, с которыми может соприка­саться человек. Для дезинфекции применяют растворы хлорной извести и хло­рамина, лизол, формалин и др. При отсутствии этих веществ используется горя­чая вода с мылом или содой.

Дезинсекция проводится для уничтожения насекомых и клещей — переносчиков возбудителей инфекционных заболеваний. С этой целью ис­пользуются различные способы: механический (выколачивание, встряхивание, стирка), физический (проглаживание утюгом, кипячение), химический (приме­нение инсектицидов — хлорофоса, тиофоса, ДДТ и др.), комбинированный. Для защиты от укуса насекомых применяют отпугивающие средства (репелленты), которыми смазываются кожные покровы открытых частей тела.

Дератизация проводится для истребления грызунов — переносчиков возбудителей инфекционных заболеваний. Она проводится чаще всего с помо­щью механических приспособлений и химических препаратов.

Большую роль в предупреждении инфекционных заболеваний играет строгое соблюдение правил личной гигиены: мытье рук с мылом после работы и перед едой; регулярное обмывание тела в бане, ванне, под душем со сменой нательно­го и постельного белья; систематическая чистка и встряхивание верхней одеж­ды и постельных принадлежностей; поддержание в чистоте жилых и рабочих помещений; очистка от грязи и пыли, обтирание обуви перед входом в помеще­ние; употребление только проверенных продуктов, кипяченой воды и молока, промытых кипяченой водой фруктов и овощей, тщательно проваренных мяса и рыбы.

Успех ликвидации инфекционного очага во многом определяется активными действиями и разумным поведением всего населения. Каждый должен строго выполнять установленные режим и правила поведения на работе, на улице и дома, постоянно выполнять противоэпидемические и санитарно-гигиенические нормы.

Общая информация | Холера | CDC

Холера — это острое диарейное заболевание, вызванное инфицированием кишечника токсигенной бактерией Vibrio cholerae серогруппы O1 или O139. По оценкам, ежегодно во всем мире происходит 2,9 миллиона случаев заболевания и 95 000 случаев смерти. Инфекция часто протекает в легкой форме или без симптомов, но может быть тяжелой. Примерно у 1 из 10 человек, заболевших холерой, разовьются серьезные симптомы, такие как водянистая диарея, рвота и судороги в ногах. У этих людей быстрая потеря жидкости в организме приводит к обезвоживанию и шоку.Без лечения смерть может наступить в течение нескольких часов.

Бактерия холеры обычно обнаруживается в воде или в пищевых продуктах, зараженных фекалиями (фекалиями) человека, инфицированного холерными бактериями. Наиболее вероятно, что холера возникнет и распространится в местах с неадекватной очисткой воды, плохой санитарией и несоответствующей гигиеной.

Бактерии холеры могут также жить в окружающей среде в солоноватых реках и прибрежных водах. Источником инфекции были моллюски, употребляемые в пищу в сыром виде. Редко люди в U.S. заразились холерой после употребления в пищу сырых или недоваренных моллюсков из Мексиканского залива.

Человек может заразиться холерой, выпив воду или приняв пищу, зараженную холерными бактериями. Во время эпидемии источником заражения обычно являются фекалии инфицированного человека, загрязняющие воду или пищу. Заболевание может быстро распространяться в районах с неадекватной очисткой сточных вод и питьевой воды. Маловероятно, что инфекция передается напрямую от одного человека к другому; поэтому случайный контакт с инфицированным человеком не является фактором риска заболевания.

Инфекция холеры часто протекает в легкой форме или без симптомов, но может быть тяжелой. Примерно у 1 из 10 человек, заболевших холерой, разовьются серьезные симптомы, такие как водянистая диарея, рвота и судороги в ногах. У этих людей быстрая потеря жидкости в организме приводит к обезвоживанию и шоку. Без лечения смерть может наступить в течение нескольких часов.

Обычно симптомы проявляются через 2-3 дня после того, как человек проглотил бактерии холеры, но это время может варьироваться от нескольких часов до 5 дней.

Лица, живущие в местах с небезопасной питьевой водой, плохой санитарией и несоответствующей гигиеной, подвергаются наибольшему риску заболевания холерой.

Если вы подозреваете, что у вас или у члена вашей семьи холера, немедленно обратитесь за медицинской помощью. Обезвоживание может быть быстрым, поэтому восполнение жидкости необходимо. Если у вас есть раствор для пероральной регидратации (ПРС), немедленно начните его принимать; это может спасти жизнь. Продолжайте пить ПРС дома и во время путешествий для лечения. Если у ребенка водянистая диарея, продолжайте кормить грудью.

Для проверки на холеру врачи должны взять образец стула или ректальный мазок и отправить его в лабораторию для поиска бактерий холеры.

Холеру можно просто и успешно вылечить путем немедленного восполнения жидкости и солей, теряемых при диарее. Пациентов можно лечить раствором для пероральной регидратации (ПРС), предварительно расфасованной смесью сахара и солей, которая смешивается с 1 литром воды и выпивается в больших количествах. Этот раствор используется во всем мире для лечения диареи.В тяжелых случаях также требуется внутривенное восполнение жидкости. При своевременной соответствующей регидратации умирает менее 1% больных холерой.

Антибиотики сокращают течение и уменьшают тяжесть заболевания, но они не так важны, как регидратация. Лицам, у которых в странах, где наблюдается холера, развиваются тяжелая диарея и рвота, следует незамедлительно обратиться за медицинской помощью.

Маловероятно, что болезнь передается напрямую от одного человека к другому; поэтому случайный контакт с инфицированным человеком не является фактором риска заболевания.

Будьте в курсе, возникали ли недавно случаи холеры в районе, который вы планируете посетить. Однако риск холеры для людей, посещающих районы с эпидемией холеры, очень низок, если предпринимаются простые меры профилактики.

Все посетители или жители в районах, где наблюдается или возникла холера, должны следовать рекомендациям по предотвращению заболеваний:

  • Пейте только бутилированную, кипяченую или химически очищенную воду, а также напитки в бутылках или банках. При использовании напитков в бутылках убедитесь, что пломба не сломана.Газированная вода может быть безопаснее негазированной. Избегайте водопроводной воды, фонтанных напитков и кубиков льда.
  • Для дезинфекции собственной воды выберите один из следующих вариантов:
    • Варить 1 минуту, или
    • Отфильтруйте и добавьте ½ таблетки йода или 2 капли бытового отбеливателя на литр / кварту воды, или
    • Используйте имеющиеся в продаже таблетки для хлорирования воды в соответствии с инструкциями производителя.
  • Часто мойте руки чистой водой с мылом, особенно перед едой или приготовлением пищи, а также после посещения туалета.
    • Если под рукой нет воды и мыла, используйте дезинфицирующее средство для рук на спиртовой основе с содержанием спирта не менее 60%.
  • Используйте бутилированную, кипяченую или химически очищенную воду для мытья посуды, чистки зубов, мытья и приготовления пищи, а также для приготовления льда.
  • Ешьте упакованные или свежеприготовленные продукты, которые подают горячими.
    • Не ешьте сырое или недоваренное мясо и морепродукты, а также сырые или недоваренные фрукты и овощи, если они не очищены от кожуры.
  • Утилизируйте фекалии в соответствии с санитарными правилами, чтобы предотвратить загрязнение воды и источников пищи.
  • FDA одобрило внешний значок однодозовой живой пероральной вакцины против холеры под названием Vaxchora ® (лиофилизированный CVD 103-HgR) для взрослых от 18 до 64 лет, которые путешествуют в зону активной передачи токсигенных Vibrio cholerae O1 ( штамм, который чаще всего вызывает холеру). Вакцина обычно не рекомендуется большинству путешественников из Соединенных Штатов, потому что очень немногие посещают районы активной передачи холеры.Всемирная организация здравоохранения (ВОЗ) одобрила три других пероральных инактивированных или неживых вакцины против холеры: Dukoral ® , ShanChol ® и Euvichol-Plus ® / Euvichol ® для поставок в Организацию Объединенных Наций, но эти вакцины недоступны в США. Ни одна вакцина против холеры не обеспечивает 100% защиты, а вакцинация против холеры не заменяет стандартные меры профилактики и контроля, включая меры предосторожности в отношении продуктов питания и воды.
  • Для получения дополнительной информации посетите страницу «Вакцины».
  • Холера была распространена в Соединенных Штатах в 1800-х годах, но распространение, связанное с водой, было устранено современными системами очистки воды и сточных вод. Очень редко люди в США заболевают холерой после употребления в пищу сырых или недоваренных моллюсков из Мексиканского залива.
  • Однако путешественники из США в районы с эпидемией холеры (например, некоторые части Африки, Азии и Латинской Америки) могут подвергаться воздействию бактерий холеры и могут заболеть после прибытия домой.Некоторые путешественники привозили домой зараженные морепродукты из-за границы, что привело к холере.
  • Органы общественного здравоохранения США и других стран работают над усилением эпиднадзора за холерой, расследованием вспышек холеры и реагированием на них, а также разработкой и внедрением профилактических мер по всему миру. Центры по контролю и профилактике заболеваний (CDC) расследуют эпидемию холеры, где бы она ни возникла, по приглашению пораженной страны и обучают лабораторных работников надлежащим методам выявления Vibrio cholerae .Кроме того, CDC предоставляет информацию о диагностике, лечении и профилактике холеры должностным лицам органов здравоохранения и информирует общественность об эффективных профилактических мерах.
  • Всемирная организация здравоохранения (ВОЗ) и Глобальная целевая группа по борьбе с холерой (GTFCC) вместе с партнерами и различными заинтересованными сторонами запустили Глобальный план действий по борьбе с холерой до 2030 года, который является беспрецедентной инициативой по борьбе и сокращению передачи холеры во всем мире. В этом всеобъемлющем плане определены приоритеты по сокращению смертности от холеры на 90% и прекращению передачи инфекции в 20 странах к 2030 году.Центры по контролю и профилактике заболеваний (CDC) поддерживают глобальную стратегию, участвуя в рабочих группах целевых групп по водоснабжению, санитарии и гигиене (WASH), ведению больных, эпидемиологии и эпиднадзору, лабораторным и оральным вакцинам против холеры.
  • Агентство США по международному развитию спонсирует некоторые международные мероприятия правительства США и предоставляет медицинские принадлежности, а также воду, средства санитарии и гигиены пострадавшим странам.
  • Управление по санитарному надзору за качеством пищевых продуктов и медикаментов проводит испытания импортных и отечественных моллюсков на В.cholerae и контролирует безопасность грядок моллюсков в США в рамках программы санитарной обработки моллюсков.

динамика хозяина, патогена и бактериофага

Abstract

Зимбабве представляет собой самый последний пример трагедии, которая постигает страну и ее народ, когда поражает холера. Вспышка 2008–2009 гг. Быстро распространилась по каждой провинции и привела к уровню смертности, аналогичному тем, которые наблюдались в результате инфекций холеры сто лет назад. В этом обзоре мы выделяем достижения, которые помогут понять, как взаимодействия между хозяином, бактериальным патогеном и литическим бактериофагом могут способствовать возникновению и подавлению вспышек холеры в эндемичных условиях и в развивающихся эпидемических регионах, таких как Зимбабве.

Диарейные болезни, включая холеру, являются ведущей причиной заболеваемости и второй по частоте причиной смерти среди детей в возрасте до 5 лет во всем мире 1,2 . Трудно определить точную заболеваемость и смертность от холеры, поскольку системы эпиднадзора во многих развивающихся странах находятся в зачаточном состоянии, и многие страны не решаются сообщать о случаях холеры в ВОЗ из-за потенциального негативного экономического воздействия этой болезни на торговлю и туризм. Сегодня реальное бремя холеры оценивается в несколько миллионов случаев в год, преимущественно в Азии и Африке. 3 .При оптимальной доставке пероральная регидратационная терапия может снизить уровень летальности с> 20%, наблюдавшихся ранее ( 4–6 ), до <1% 7 . Еще предстоит проделать большую работу, поскольку 27 стран сообщили о показателях летальности, превышающих пороговое значение в 1% в 2007 году (REF. 8).

Возбудитель холеры, грамотрицательная бактерия Vibrio cholerae, является факультативным патогеном, жизненный цикл которого имеет как человеческую, так и экологическую стадию 9,10 . V. cholerae дифференцируется серологически на основе антигена O его липополисахарида (ЛПС) (). Штаммы, продуцирующие токсин холеры ( токсигенных ), серогрупп O1 и O139 вызывают подавляющее большинство заболеваний. Серогруппа O1 подразделяется на два фенотипически различных биотипов , Эль-Тор и классический, второй из которых связан с более ранними пандемиями. Оба биотипа могут быть далее подразделены на два серотипа, Инаба и Огава 7 . За последние 20 лет Эль Тор заменил классический биотип 11 ; однако наследие классического биотипа сохраняется, поскольку появились штаммы Эль-Тор, содержащие токсин классической холеры. 12–14 .Серогруппа O139 впервые появилась в 1992 г. в результате мультигенной замены в кодирующей O антиген-кодирующей области штамма-предшественника O1 El Tor 15 . Хотя серогруппа O139 вызвала разрушительные вспышки в 1990-х годах, штамм Эль Тор остается доминирующим штаммом во всем мире 11,16,17 .

Филогенетическое родство штаммов Vibrio cholerae

На основании антигенности компонента О-антигена липополисахарида внешней мембраны в водной среде существует более 200 серогрупп (O1 – O200) Vibrio cholerae .Только подмножество штаммов серогрупп O1 и O139 являются токсигенными (Tox + ) и, следовательно, способны вызывать холеру при приеме внутрь; такие штаммы отбираются у хозяина. Другие штаммы нетоксигены (Tox ) и отбираются против них. Различные типы О-антигена обозначены цветом внешней мембраны и покрытого оболочкой жгутика (периплазматическое пространство и внутренняя мембрана не показаны). Капсулы присутствуют в подмножестве штаммов. Генотипы разных штаммов обозначены цветом цитоплазмы; обратите внимание, что Tox + O1 и O139 имеют по существу один и тот же генотип, за исключением генов O-антигена.

Патофизиология холеры описана в обширной литературе. Короче говоря, патогенные штаммы несут в себе ключевые факторы вирулентности, которые включают холерный токсин 18 и ко-регулируемый токсин (TCP) 19,20 , самосвязывающийся пилус, который связывает бактериальные клетки вместе 21 , возможно, чтобы противостоять силам сдвига. в тонком кишечнике хозяина. Токсин холеры представляет собой секретируемый токсин субъединицы AB 5 . Пентамер субъединицы B связывает моносиалотетрагексозилганглиозиды на абсорбирующих эпителиальных клетках, вызывая эндоцитоз ферментативной субъединицы A, после чего он рибозилирует АДФ субъединицу G-белка, который контролирует активность аденилилциклазы.Хотя вирулентность является многофакторной, холерный токсин является ключевым фактором, ответственным за обильную секреторную диарею, которая возникает у инфицированных людей. Трансмиссивные элементы, такие как лизогенный бактериофаг , несущий гены токсина холеры 22 и элемент SXT, несущий гены устойчивости к антибиотикам 23 , будут продолжать определять эволюцию V. cholerae .

Биологические факторы и факторы окружающей среды, которые способствуют динамике вспышек холеры, продолжают оставаться предметом интенсивных исследований.Было опубликовано несколько обзорных статей, посвященных важности факторов окружающей среды в распространении вспышек холеры. 24–26 . В этом обзоре мы сосредоточимся скорее на трех биологических факторах, которые, как считается, играют важную роль в возникновении и формировании вспышек холеры: восприимчивость хозяина, вирулентность V. cholerae и литические бактериофаги. Ниже мы обсудим эту троицу факторов, связанных с динамическим характером вспышек холеры.

Человек-хозяин

Клинический спектр

V.cholerae инфекция

Инфекция V. cholerae вызывает клинический спектр, который варьируется от бессимптомной колонизации до холеры гравис, наиболее тяжелой формы болезни (). После приема организмом зараженной пищи или воды V. cholerae колонизирует тонкий кишечник в течение 12–72 часов до появления симптомов. Холера часто начинается с желудочных спазмов и рвоты, за которыми следует диарея, которая может прогрессировать до потери жидкости до 1 литра в час. 27 .Эти потери приводят к серьезному истощению объема жидкости и метаболическому ацидозу, что может привести к коллапсу кровообращения и смерти 7 . Стул с рисовой водой обычно содержит от 10 10 до 10 12 вибрионов на литр. Пациенты с симптомами могут выделять вибрионы до начала болезни 28,29 и будут продолжать выделять организмы в течение 1-2 недель 30,31 . Бессимптомные пациенты обычно выделяют вибрионы со стулом только в течение 1 дня, примерно 10 3 вибрионов на грамм стула 32 .Следовательно, распределение пациентов с симптомами влияет на количество V. cholerae , которые выделяются для последующей передачи.

Таблица 1

Клинический спектр инфекции Vibrio cholerae

Бессимптомная инфекция Легкая инфекция Тяжелая инфекция

Рвота и обильная диарея
Обезвоживание Нет От легкой до легкой От средней до тяжелой (гиповолемический шок)
Характеристики стула Нормальный водный стул Нормальный жидкий стул
Вибрионов на грамм стула До 10 5 До 10 8 10 7 до 10 9 в стуле (и рвотных массах)
Лечение 900 Нет Раствор для пероральной регидратации (O RS) ПРС, внутривенные жидкости и антибиотики
Смертность Нет Нет Без лечения: до 50% Вылечено: менее 1%
9 из них с симптомами варьируется в зависимости от возраста и эндемичности заболевания.В эндемичных условиях, таких как дельта реки Ганг, дети с большей вероятностью будут госпитализированы с тяжелым заболеванием 33 . За последние 20 лет преобладание тяжелых случаев переместилось на детей младшего возраста, с пиком тяжелых случаев в возрасте 2 лет 34 . Напротив, при эпидемических моделях передачи, например, когда V. cholerae вводят иммунологически неинфицированным населением, все возрастные группы кажутся одинаково восприимчивыми к симптоматической инфекции 16,35–37 .

Бессимптомные случаи также могут способствовать распространению микроорганизма, хотя и на гораздо более низком уровне, чем пациенты с симптомами, и могут отражать важный компонент приобретенного иммунитета, который наблюдается в некоторых сообществах. Однако бессимптомные случаи часто трудно задокументировать. Четырехкратное повышение титра вибриоцидного антитела в сыворотке крови является полезной мерой для выявления бессимптомных людей, которые могут быть инфицированы, но от которых невозможно изолировать организм.Используя положительный результат посева из ректального мазка или ответ на вибриоцидные антитела для определения инфекции, недавно было обнаружено, что у бангладешских детей в возрасте до 5 лет вероятность появления симптомов в 2–3 раза выше, чем у детей старше 5 лет 35 . Частота симптомов во всех возрастных группах в этом исследовании составила 57% 35 . Это соответствует показателям симптоматических инфекций, которые были обнаружены в связи с классическими штаммами в более ранней литературе 32,38–40 , но намного выше показателей, зарегистрированных для инфекций Эль-Тор в 1970-е годы 40 .Таким образом, бессимптомные случаи могут составлять примерно половину всех случаев. Будущие исследования иммунологии бессимптомных пациентов помогут оценить их вклад в защитный иммунитет на популяционном уровне.

Восприимчивость к холере

Генетические факторы хозяина и факторы питания влияют на восприимчивость к холере. Антигены группы гистокрови ABH представляют собой набор клеточных и секретируемых гликолипидов и гликопротеинов, которые являются ключевыми детерминантами восприимчивости хозяина к ряду желудочно-кишечных патогенов; они, по-видимому, влияют на специфичность рецептора клетки-хозяина в отношении связывания патогенов и токсинов.Фенотип O соответствует немодифицированному антигену H и связан со сниженным риском заражения V. cholerae . Однако, как только хозяин инфицирован, фенотип О ассоциируется с повышенным риском серьезных симптомов; механизм этого остается неизвестным. Распространенность фенотипа О варьируется среди человеческих популяций; его низкая распространенность в дельте реки Ганг предполагает, что существует отбор против этого фенотипа в эндемичной по холере зоне 35,41,42 .В популяциях с высокой распространенностью группы крови O, например, в странах Латинской Америки, болезнь протекает тяжелее, и потребности в регидратации и госпитализации инфицированных людей существенно выше 43,44 .

Хотя антиген группы крови H является единственным давно признанным генетическим фактором, связанным с восприимчивостью к холере, другие генетические полиморфизмы, вероятно, были выбраны за или против, учитывая исторически высокие показатели смертности от холеры.Например, недавнее исследование связывало тяжелую холеру с вариантом LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) 45 , консервативного белка врожденного иммунитета. Экспрессия LPLUNC1 повышается в эпителии тонкой кишки во время острой холеры и может влиять на течение инфекции V. cholerae 46 .

Недоедание, измеряемое по задержке линейного роста, не является фактором риска заражения V. cholerae 35 .Однако дефицит ретинола (витамина А), питательного микроэлемента, который способствует иммунитету слизистых оболочек, является фактором риска, связанным как с инфекцией V. cholerae , так и с развитием симптоматического заболевания 35 . Цинк, еще один питательный микроэлемент, который способствует иммунитету слизистых оболочек, может истощаться во время диарейного заболевания. 47 . Оральный цинк устраняет этот дефицит у детей, что приводит к значительному сокращению объема стула и времени до прекращения диареи 44 .

Защитный иммунитет

Несколько исследований демонстрируют, что клинически очевидная инфекция V. cholerae индуцирует защитный иммунитет против последующей инфекции (ВСТАВКА 1). Заражение североамериканских добровольцев классическим биотипом и биотипом Эль-Тор обеспечивало 100% и 90% защиту соответственно от последующего заражения 31,48 . Аналогичным образом, в эндемических условиях было обнаружено, что более 90% пациентов с тяжелым заболеванием, вызванным инфекцией классическим биотипом, были защищены от инфекции в будущем, на основании наблюдаемых и ожидаемых показателей госпитализации в связи со вторым эпизодом холеры в США. это население 33 ; аналогичные результаты были получены в отдельном исследовании 49 .Механизм этого защитного иммунитета против инфекции и болезни V. cholerae неизвестен.

Ящик 1 | Иммунный ответ человека на

Vibrio cholerae

Врожденный ответ

Холера считается прототипом невоспалительной инфекции. Часто отсутствуют грубые изменения слизистой оболочки кишечника или архитектурной целостности тонкой кишки. Однако наблюдается повышенная регуляция провоспалительных цитокинов (включая интерлейкин-1β и фактор некроза опухоли), экспрессии различных бактерицидных белков и миграции нейтрофилов в собственную пластинку во время острой холеры.Естественная вариабельность врожденного иммунного ответа может влиять на восприимчивость, что подтверждается открытием, что полиморфизм в промоторной области гена LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) связан с повышенным риском холеры.

Адаптивный ответ

Как адаптивный иммунный ответ на холеру обеспечивает защиту от последующего заболевания, неизвестно. Поскольку Vibrio cholerae неинвазивен, было высказано предположение, что секреторный иммуноглобулин А кишечника (sIgA) защищает от колонизации слизистой оболочки.Примерно через 8 дней после начала холеры наблюдается пик циркуляции антиген-специфических лимфоцитов V. cholerae , которые экспрессируют хемокиновые рецепторы кишечника (см. Рисунок) 112 . Эти лимфоциты вскоре становятся необнаруживаемыми в крови, поскольку они возвращаются на слизистую оболочку кишечника, где они приводят к увеличению секреции sIgA в кишечнике. Реакции сывороточных антител, такие как реакция вибриоцидных антител, также достигают максимума через 1-3 недели после заражения. Хотя высокие сывороточные титры вибриоцидных антител и IgA, специфичного к холерному токсину, коррелируют с защитой от инфекции, эти антитела снижаются до исходного уровня через год после заражения, задолго до того, как защитный иммунитет к холере ослабевает.Точно так же у добровольцев, инфицированных V. cholerae , уровни sIgA слизистой оболочки снижаются до исходного уровня в течение нескольких месяцев. Однако, когда добровольцев, у которых больше нет определяемых антител, повторно провоцируют антигенов V. cholerae , они демонстрируют стойкую способность вызывать анамнестический иммунный ответ, развивая пиковую кишечную секрецию антител так же быстро, как в течение трех дней. Следовательно, возможно, что скорость анамнестического ответа на повторное воздействие, а не заранее сформированные антитела, может опосредовать защиту от холеры.Это подтверждается недавними данными о том, что холера вызывает ответ В-клеток памяти, который выявляется в течение по крайней мере 1 года после заражения холерой 113 .

Выявлено несколько коррелятов иммунитета. Лучше всего охарактеризованным серологическим маркером иммунитета является титр сывороточных вибриоцидных антител. Это антитело является комплемент-зависимым бактерицидным антителом, титр которого заметно увеличивается после заболевания, но снижается до исходного уровня через 6–9 месяцев 7 . В Бангладеш вибриоцидные антитела обнаруживаются у большинства людей в возрасте 10–15 лет и связаны со снижением риска инфицирования.Поскольку V. cholerae является неинвазивным патогеном, эти сывороточные антитела могут не вносить непосредственный вклад в защиту на уровне слизистой оболочки кишечника, но они могут быть полезны для оценки степени защитного иммунитета на уровне популяции. Антитела иммуноглобулина A, специфичные к TCP, LPS или субъединице B холерного токсина, коррелируют с защитой от последующей инфекции и болезни 35 .

Полевые испытания вакцины обеспечивают контролируемую оценку устойчивости адаптивных иммунных ответов к В.холера . В крупнейшем контролируемом исследовании 62 285 участников в Бангладеш были рандомизированы для получения 3 пероральных доз (с интервалом в 6 недель) комбинации убитых целых клеток (Эль Тор и классические) плюс субъединица B холерного токсина (вакцина B – WC), цельноклеточный компонент без B-субъединицы (вакцина WC) или убитый Escherichia coli K12 в качестве контроля. Через 3 года наблюдения две вакцины (B – WC и WC) имели 50% и 52% защитную эффективность, соответственно 50 . Для детей младше 5 лет эффективность составила 23–26%.Через 6 месяцев наблюдения вакцина B – WC дала 85% защиту. 51 . Ведутся споры о том, демонстрируют ли эти данные эффективность, достаточную для широкомасштабного распространения. В настоящее время предпринимаются усилия по созданию новых вакцин для обеспечения более высоких и устойчивых ответов у реципиентов, а также для снижения производственных затрат с целью преодоления как иммунологических, так и производственных препятствий, которые ограничивают применимость существующих вакцин против холеры. 52–55 .

Роль, которую коллективный иммунитет играет в замедлении передачи холеры, недавно стала оценена.При испытаниях эффективности вакцины отдельные пациенты рандомизируются, чтобы гарантировать, что защитная эффективность отражает только прямой эффект вакцины 56 . Это означает, что при лицензировании вакцин не учитываются их преимущества на уровне населения. Обсуждаемое выше испытание вакцины B – WC имело уровень охвата от 4% до 65% в разных регионах 50,57 . Когда уровни заболеваемости холерой сравнивались с показателями охвата вакцинацией в конкретных регионах, было обнаружено, что заболеваемость среди реципиентов плацебо обратно коррелировала с уровнем охвата прививками 57 : там, где охват был высоким, даже среди тех, кто этого не сделал. Получившие вакцину, вероятность заболеть холерой по-прежнему на четверть ниже, чем у невакцинированных лиц в районах с низким охватом.Когда коллективный иммунитет включен в имитационные модели эффективности вакцины, охват вакцинацией B – WC 50% в эндемичных районах приводит к снижению общего числа случаев на 93%. 58 . Взятые вместе, эти исследования доказывают, что вакцина B-WC может обеспечить достаточную защиту для широкомасштабной вакцинации в эндемичных регионах и что коллективный иммунитет, вероятно, будет играть важную роль в ограничении передачи холеры.

Передача с точки зрения хозяина

Несколько групп создали математические модели, использующие перспективы как хозяина, так и патогена, чтобы помочь объяснить и предсказать природу вспышек холеры.Цель большинства этих моделей — точно отразить резкий рост и снижение заболеваемости холерой, которое наблюдается два раза в год в регионах вокруг Бенгальского залива. Модель была построена для включения показателей передачи, фактора сезонных колебаний и расчета количества восприимчивых людей на основе различного защитного иммунитета от прошлой инфекции. 59–61 . Эти идеи были основаны на проверке гипотез о том, что высокое соотношение бессимптомных и симптоматических случаев связано с разрешением вспышки и что короткий интервал защитного иммунитета (2–12 недель) после заражения допускает последующие вспышки, которые наблюдаются в Бангладеш 62 .Результаты показывают, что сочетание многих бессимптомных случаев и недолговечного иммунитета, а не молчаливых шеддеров , дает модель, которая лучше всего отражает эпидемиологические данные из Западной Бенгалии. У модели есть ограничения: она предполагает соотношение бессимптомных и симптоматических случаев, которое намного выше, чем наблюдаемое в последние годы, и она была протестирована с использованием показателей смертности, которые связаны с клинически определенной холерой из Западной Бенгалии между 1891 и 1940 годами — эпохой до открытия. ротавирусной и энтеротоксигенной E.coli , которые являются смешивающими факторами. Несмотря на свои недостатки, эти модели улучшают наше понимание сложной динамики вспышек и показывают, насколько мощной может быть реакция хозяина в ограничении передачи. Новые модели передачи холеры должны по-прежнему включать факторы сезонных колебаний, соотношение бессимптомных и симптоматических случаев и темпы снижения защитного иммунитета.

Возбудитель

Инфекционные дозы в моделях на животных

Инфекция человека-хозяина представляет собой многоступенчатый процесс: V.cholerae необходимо принимать внутрь в дозе, достаточной для преодоления врожденной иммунной защиты, затем экспрессии факторов вирулентности для колонизации тонкой кишки и, наконец, для координации выхода из организма хозяина для облегчения передачи 63 (). Модели холеры на животных в значительной степени являются показателями успешности первых двух стадий 64 . Используя модель инфекции у новорожденных мышей, было показано, что V. cholerae , которые выделяются с рисовым водяным стулом человека, находятся в гиперинфекционном состоянии, демонстрируя ID 50 из 10–100 клеток по сравнению с примерно 500 клетками для В.cholerae , выращенный in vitro 65–67 . Гиперинфекция также была задокументирована у Citrobacter rodentium 68 , а гиперинфекционный V. cholerae может быть воспроизведен при прохождении через мышиную модель инфекции 68,69 . Определение и фенотип гиперинфективности противоречивы из-за сложностей при выборе наиболее подходящих условий культивирования для роста контрольного штамма.

Жизненный цикл патогенного Vibrio cholerae

Токсигенные штаммы Vibrio cholerae сохраняются в водной среде вместе с нетоксигенными штаммами, чему способствует образование биопленок на биологических поверхностях и использование хитина в качестве источника углерода и азота.При попадании этих адаптированных к водной среде бактерий в загрязненную пищу или воду токсигенные штаммы колонизируют тонкий кишечник, размножаются, выделяют токсин холеры и возвращаются в окружающую среду хозяином при секреторной диарее. Патогенные микроорганизмы, выделяемые калом, находятся в преходящем гиперинфекционном состоянии, которое способствует усилению вспышки за счет передачи последующим хозяевам.

Молекулярные механизмы, которые способствуют гиперинфективности у V. cholerae , многофакторны.Исследования на микроматрицах показали, что глобальный профиль транскрипции гиперинфекционных V. cholerae из рисового водяного стула отличается от такового у V. cholerae , выращенных in vitro или верхних отделов тонкой кишки V. cholerae , выведенных в рвотных массах 65, 70,71 (). Большинство известных генов вирулентности, включая гены холерного токсина и TCP, подавляются в стуле из рисовой воды, но механизм этого подавления остается неизвестным. Еще одна уникальная особенность — подавление генов хемотаксиса, что удивительно, учитывая, что планктонные вибрионы, выделяемые пациентами, являются жгутиками и очень подвижны.Было показано, что это подавление хемотаксиса является одним из компонентов гиперинфективности, потому что подвижные, но не хемотаксирующие мутанты V. cholerae являются гиперинфекционными 66,72,73 .

Паттерны экспрессии гена Vibrio cholerae на разных стадиях жизненного цикла

При проглатывании (нижняя правая панель) Vibrio cholerae использует подвижность и муциназы для проникновения через слизистый гель и N -ацетилглюкозамин-связывающий белок A ( GbpA) и другие факторы колонизации эпителия тонкой кишки.Существенные изменения в экспрессии генов сопровождают этот переход от пруда к острой инфекции, включая, помимо прочего, индукцию vieA, которая кодирует фосфодиэстеразу, гидролизующую вторичный мессенджер циклический ди-GMP, и гены, регулируемые ToxR, включая гены холерного токсина и самоагрегирующиеся пилусы, регулируемые токсинами (TCP). Кроме того, репрессируются несколько генов, например, гены хитин-связывающего маннозу-чувствительного гемагглютинина пилуса (MSHA) и стрессового сигма-фактора RpoS.На поздней стадии инфекции (нижняя левая панель) V. cholerae снова изменяет экспрессию своего гена, чтобы отделиться от эпителия — «реакция бегства» — и подготовиться к передаче другому хозяину (например, распространение в домашних условиях). ) или попадание в водную среду. Изменения на поздних стадиях включают индукцию генов синтеза c-di-GMP (дигуанилилциклазы), систем поглощения питательных веществ (таких как регулон регуляции поглощения железа (Fur)) и подвижности (Fla), а также репрессию таких генов, как для хемотаксиса (Che) и регулона ToxR.Возникающее в результате состояние «подвижное, но не хемотаксическое» способствует гиперинфективности. Если бактерии, выделяющиеся со стулом, не попадают в организм другого хозяина в течение короткого периода времени, то их ждет одна из двух судьб (верхняя панель): укоренение в водной среде путем нахождения подходящих источников питательных веществ, таких как хитин, или распад в « активную среду ». но некультивируемое состояние. При воздействии хитина V. cholerae индуцирует несколько генов, участвующих в присоединении и катаболизме хитина (регулон ChiS), а также гены, участвующие в генетической компетентности (регулон TfoX).Образование биопленок на поверхности опосредуется индукцией регулона Vps, который кодирует внеклеточный полисахарид. Во время перехода в активное, но не культивируемое состояние, происходят большие изменения в экспрессии генов, поскольку V. cholerae пытается адаптироваться к условиям с низким содержанием питательных веществ. К ним относятся индукция генов фосфатного и азотного голодания (phoB и glnB-1 соответственно) и репрессия генов трансляционного аппарата.

Транскриптом V. cholerae , пассированный от животных, также уникален и был выявлен в двух недавних исследованиях.Во-первых, существует скоординированная «реакция бегства», которая позволяет организму отделяться от ворсинок кишечника, готовясь к выходу из организма хозяина; это регулируется стрессом и стационарной фазой сигма-фактора РНК-полимеразы RpoS 74 . Во-вторых, на более поздних стадиях заражения животных, V. cholerae активирует экспрессию генов, которые не требуются для инфекции, но важны для выживания при переходе в водную среду 75 . Эта предварительная индукция генов выживания в окружающей среде на поздних этапах инфекции может подготовить организм к жесткому селективному давлению в воде пруда, облегчая передачу 24,65 .В большинстве описанных выше исследований бактериальные клетки, составлявшие инфекционную дозу, были планктонными клетками, а не агрегатами. Было проведено одно исследование с участием добровольцев, в котором добровольцам вводили V. cholerae в морщинистой форме (то есть агрегатной и продуцирующей экзополисахариды); Инфекционная доза была аналогична дозе, наблюдаемой для планктонных форм, а морщинистые формы выделялись добровольцами 76 . Кроме того, люди выделяют V. cholerae в виде сложных биопленко-подобных агрегатов 67,77,78 .Идентификатор ID 50 V. cholerae выделяется в совокупности, и роль, которую эти совокупности играют в передаче, еще предстоит определить.

Инфекционная доза у людей

Инфекционная доза V. cholerae у людей сильно варьируется в зависимости от бактериального штамма и хозяина. Дозы 10 8 –10 11 клеток требовались для обеспечения последовательной колонизации у здоровых добровольцев из Северной Америки 7,29,31 . Инфекционная доза снижается до 10 4 –10 8 при использовании бикарбонатного буфера для нейтрализации желудочной кислоты незадолго до инокуляции; этот метод дает 90% заражений 7,29,31 .В домашнем хозяйстве пища может действовать как кислотный буфер; В исследованиях на добровольцах введение бактерии как часть «еды» из риса, рыбы, заварного крема и обезжиренного молока дало результаты, сравнимые с результатами, наблюдаемыми при одновременном введении бактерий и бикарбоната 79 . В эндемичных условиях инфекционная доза неизвестна. Подсчет V. cholerae в образцах домашнего хозяйства и окружающей среды исторически сложен, требует быстрого реагирования и использования флуоресцентной микроскопии для подсчета тех бактерий, культивирование которых может оказаться затруднительным. 80 .

Клиническое наблюдение, что буферная кислота желудочного сока снижает инфекционную дозу, предполагает, что бактериальные гены, участвующие в кислотной устойчивости, могут способствовать вирулентности. Сигнатурный мутагенез (STM) был использован для поиска подмножества генов вирулентности, которые вносят вклад в кислотостойкость in vitro 81 . Удаление этих генов ослабило V. cholerae в модели инфекции у новорожденных мышей, что подтверждает их роль в вирулентности. Кроме того, обнажая В. дикого типа.cholerae к кислоте непосредственно перед инокуляцией мышей давало большое конкурентное преимущество перед неадаптированными к кислоте бактериями 82 . Эти данные, наряду с другими, демонстрируют, что бактерии, выращенные in vitro , могут стать более заразными в результате воздействия стресса. Кроме того, эти результаты могут иметь клиническое значение в тех регионах мира, где распространено пониженное производство кислоты в желудке (ахлоргидрия), вторичное по отношению к инфекции Helicobacter pylori, например, Бангладеш 7 .

Передача с точки зрения патогена

Роль, которую гиперинфекция играет в быстром распространении холеры среди населения в начале вспышки, остается непроверенной. V. cholerae остается гиперинфекционным в течение как минимум 5 часов после попадания от пациентов в водную среду, что позволяет предположить, что гиперинфекция играет особую роль в передаче инфекции в районах с высокой плотностью населения, где существует вероятность контакта с организмом другого человека. в относительно короткие сроки 65,70 .Одна модель передачи холеры предполагает, что вспышка начинается, когда либо уже инфицированный индексный случай мигрирует и загрязняет новую территорию, либо V. cholerae , потребляемая из естественного водоема окружающей среды, создает новый индексный случай у постоянного населения. В обоих сценариях не исключено, что ускорение вспышки является результатом быстрого распространения гиперинфекционного вируса V. cholerae от человека к человеку при кратковременном нахождении в окружающей среде.Модели передачи, которые допускают только случайное попадание V. cholerae в окружающую среду, не предсказывают резкого роста числа случаев, которые наблюдаются в начале вспышек по всему миру, включая те, которые происходят раз в два года в Бангладеш 11 . Однако модели, которые включают гиперинфекцию 83 , лучше отражают этот резкий подъем.

Поддержание передачи через водоемы

Эндемичная холера встречается в регионах с естественными водными резервуарами токсигенных и нетоксигенных V.cholerae , где бактерии могут сохраняться либо в свободноживущем состоянии, либо в ассоциации с фитопланктоном 84–86 , зоопланктоном 85–88 или биотическим и абиотическим детритом 89,90 . Эти взаимодействия могут быть как полезными, так и антагонистическими. 91,92 . Ассоциации вообще не случайны. Например, V. cholerae развил механизмы для присоединения, разложения и использования хитина в качестве источника углерода и азота 93–95 ().Для экологических изолятов методы ДНК-типирования, основанные на секвенировании гипервариабельных локусов повторов короткой последовательности, начали лучше определять взаимосвязь между нетоксигенными и токсигенными V. cholerae . Было обнаружено, что два сельских региона, разделенных 80 км в дельте реки Ганг, содержат отдельные, разнообразные штаммы из экологических и клинических условий 96 . Изоляты из окружающей среды состояли как из токсигенных, так и из нетоксигенных штаммов O1 El Tor и O139 на фоне нетоксигенных штаммов, представляющих многие серогруппы.Напротив, клинические изоляты были строго токсигенными O1 El Tor и O139, но относились к разным типам штаммов. Эти результаты демонстрируют, что в организме хозяина токсигенные штаммы обладают селективным преимуществом перед нетоксигенными штаммами из окружающей среды. Взаимосвязь между экологическими и клиническими штаммами может быть разной в других регионах мира и, вероятно, будет варьироваться в зависимости от окружающей среды, санитарии, инфраструктуры и плотности населения.

Селективное давление в водной среде

Некоторые бактериальные патогены, в том числе V.cholerae , теряют способность культивироваться на стандартных средах после переноса от хозяина или лаборатории в водную среду 24,97 . Этот фенотип традиционно известен как «жизнеспособное, но не культивируемое» (VBNC) состояние, поскольку клетки сохраняют способность к основным метаболическим процессам, таким как синтез белка, дыхание и поддержание целостности мембран, несмотря на их неспособность культивироваться 24 . Альтернативный, более консервативный термин, который применяется к этому состоянию, — «активный, но не культивируемый» (ABNC), поскольку остается неясным, живы ли еще бактерии, утратившие культивирование на стандартных средах 98 .

V. cholerae может быстро превратиться в ABNC, когда покидает человека-хозяина и попадает в водную среду. Исследования с участием V. cholerae , полученных от пациента и in vitro , которые подвергались диализу в прудовой воде, продемонстрировали снижение культивирования на 60% и 90% через 5 часов и 24 часа, соответственно, 65 . Анализ микроматрицы продемонстрировал быстрые и поразительные изменения транскрипции, когда бактерии входили в состояние ABNC 65 . Эти изменения включали индукцию генов поглощения фосфатов и фиксированного азота и подавление генов синтеза белка и энергетического метаболизма, что согласуется с низкими уровнями источников углерода, фосфатов и фиксированного азота, которые часто встречаются в водной среде.Остается проверить, будет ли включение твердых частиц, которые были отфильтрованы из воды пруда в вышеупомянутом исследовании, продлить культивирование V. cholerae . Учитывая возможность такого быстрого снижения культивируемости, исследователи задали вопрос, является ли большинство из клеток V. cholerae , заражающих людей из окружающей среды, ABNC или культивируемыми клетками. Одна из гипотез гласит, что если культивируемые клетки более заразны, чем клетки ABNC, то ID 50 , рассчитанный по общему количеству клеток, будет увеличиваться по мере уменьшения процента культивируемых клеток в популяции.Это было подтверждено в недавних экспериментах, предполагающих, что основными виновниками инфицирования человека, вероятно, являются культивируемые клеток V. cholerae 65 . В будущих математических моделях передачи V. cholerae должна быть учтена возможность уменьшения скорости культивирования.

V. cholerae литический бактериофаг

Биология вибриофагов

Восемьдесят лет назад было высказано предположение, что бактериофаги могут контролировать естественные популяции патогенов 99,100 .Более поздние исследования в области морской микробиологии выявили элегантный баланс между бактериофагами и их цианобактериальной добычей 101 . С клинической точки зрения бактериофаги в принципе могут использоваться для профилактики или лечения инфекций. Действительно, документально подтверждена «фаговая терапия» против холеры и других заболеваний (ВСТАВКА 2). Существует не менее 200 видов бактериофагов, которые инфицируют V. cholerae , известных как вибриофаги 102,103 . Нитевидный лизогенный вибриофаг CTXΦ является одним из наиболее охарактеризованных, поскольку он несет гены, кодирующие токсин холеры 22 .Первым секвенированным геномом хвостатого вибриофага был геном κ139; этот вибриофаг может быть как лизогенным, так и литическим. Основным механизмом, с помощью которого V. cholerae O1 становится устойчивым к κ139 и многим другим вибриофагам, является мутация кластера генов rfb , который кодирует ферменты для синтеза LPS 104 . В отсутствие рецептора антигена LPS O вибриофаг не может связываться или инфицировать бактериальную клетку. Все rfb -нулевые мутанты V. cholerae O1, которые были протестированы на сегодняшний день, аттенуированы 65,67,105 .

Ящик 2 | Исследование бактериофагов

В 1915–1917 годах Twort 114 и d’Hérelle 115 независимо друг от друга открыли бактериофаги. Д’Эрелль определил, что бактериальная инфекция на животных моделях может быть ослаблена бактериофагами, и в 1925 году состояние пациентов с бубонной чумой улучшилось после того, как д’Эрелль ввел бактериофаги непосредственно в их бубоны (увеличенные лимфатические узлы). 116 . Эти открытия привели к исследованию бактериофагов, в задачу которого входило изучение терапии бактериофагами холеры в Индии 116 .В их первом испытании терапии сравнивали 244 нелеченных пациента с холерой и 219 пациентов с холерой, которых лечили вибриофагами; в нелеченой группе смертность составила 20%, тогда как в обработанной группе — 6,8% (χ 2 , p <0,01). Другие исследования показали аналогичные результаты 5,116,117 . Несмотря на некоторые ограничения, характерные для той эпохи, расследование добилось достаточного успеха, чтобы расширить свои усилия. 5 .

За 1928, 1929 и 1934 годы, всего 36 000, 130 823 и 871 316 доз вибриофагов были подготовлены и распространены сотрудниками по расследованию в то время, когда начались вспышки в конкретных исследуемых сообществах в Индии 116 .Вибриофаги также распространялись в общественных источниках питьевой воды для профилактики. Смертность от холеры сравнивалась с контрольными сообществами до и после вмешательств. Трехлетний уровень смертности от холеры снизился с 30 до 2 на 10 000 в регионах, которые лечились вибриофагами 117 . Хотя эти исследования имели несколько ограничений, они предоставляют единственные доступные данные об эффективности терапии вибриофагами. Достижения в области регидратации и антибиотикотерапии в 1930-х и 1940-х годах сделали испытания бактериофагов, основанные на конечных точках смертности, неэтичными и статистически сложными 116,118 .

Вибриофаги в окружающей среде

В 1930-х годах было обнаружено, что случаи холеры положительно коррелировали с изоляцией вибриофагов в водной среде 106 . В наше время была описана отсроченная положительная согласованность между ростом числа случаев холеры и последующим ростом вибриофагов в окружающей среде. 107 . Модель, разработанная Jensen et al. предсказывает, что если вспышка будет инициирована увеличением В.cholerae в окружающей среде, плотность вибриофагов впоследствии будет увеличиваться, что в конечном итоге будет способствовать сокращению вспышки 108 . В Международном центре исследований диарейных заболеваний в Бангладеш (ICDDRB) рост случаев холеры был связан с согласованным, но отсроченным увеличением доли больных холерой с вибриофагами в стуле 109 . Вибриофаги, идентифицированные в этом исследовании, были литическими вибриофагами (JSF4), хотя у пациентов можно выделить несколько типов вибриофагов 107 .Титры вибриофагов в стуле из рисовой воды варьировались от 10 2 до 10 8 бляшкообразующих единиц на миллилитр, что согласуется с другими публикациями 65,67 . Несмотря на присутствие литических вибриофагов, все стула были положительными на V. cholerae и V. cholerae , как правило, по количеству вибриофагов, по крайней мере, на порядок. Последующие исследования показали, что большинство бактериальных изолятов из стула все еще чувствительны к вибриофагам 65,67 .Пока неясно, почему вибриофаги в кишечнике человека не могут избавиться от инфекции V. cholerae , но эта «неудача» может играть важную роль в распространении клональной экспансии фагов во время вспышек. 109 .

Передача с точки зрения вибриофага

Современные эксперименты начали проверять гипотезу о том, что фаги могут ослаблять бактериальную передачу. Например, тесты подвижности с использованием микроскопии в темном поле были использованы для быстрого скрининга стула из рисовой воды на наличие вибриофагов; стул, который был отрицательным в темном поле (не содержал подвижных вибрионов), с большей вероятностью содержал литические вибриофаги и имел низкое количество культивируемых клеток, но схожее общее количество клеток 77 .С помощью этого косвенного измерения для фагов было обнаружено, что по крайней мере половина пациентов с холерой, которые наблюдались в течение 5-летнего периода в ICDDRB, содержали вибриофаги, а домашние контакты пациентов с положительным индексом вибриофагов имели меньшую вероятность инфицирования. с V. cholerae , чем люди, которые контактировали с пациентом, который не был фагоположительным 77 . Эти результаты согласуются с выводом о десятикратном снижении инфекционной дозы В.cholerae , когда в стуле хозяина есть вибриофаги 67 .

V. cholerae обычно превосходит литические бактериофаги сразу после пассажа от хозяина 65 , 67 . В лабораторных экспериментах с использованием стула из рисовой воды, выращенного человеком, бактериофаги имеют начальный всплеск репликации в течение первых нескольких часов в водной среде и могут достигать отношения бактериофагов к бактериям примерно 1: 1 за 24 часа 65,67 .Хотя гиперинфекция может сохраняться в течение нескольких часов после пассажа от хозяина 65,70 , потеря культивирования (обсуждалось выше) и расцвет бактериофагов в водной среде, вероятно, объединяются, чтобы блокировать передачу 65 . Контрольные эксперименты с , полученным in vitro , V. cholerae и бактериофагами подтверждают, что бактериофаги могут ограничивать бремя инфекции 65,67 . Однако бактериофаги никогда не могут полностью блокировать инфекцию, поскольку мутанты V.cholerae , у которых отсутствует зрелый LPS, избегают хищничества и колонизируют мышей, хотя и в меньшем количестве. Как уже упоминалось, мутанты LPS ослаблены и могут быть потеряны в естественном жизненном цикле V. cholerae 65,67,105 .

Таким образом, динамическое взаимодействие между бактериофагом и бактерией в воде пруда предполагает, что модель передачи холеры должна включать в себя меру быстрого снижения способности бактерий к культивированию и уничтожения бактериофагами. В закрытой экспериментальной системе передача В.cholerae можно свести к минимуму, если эти два фактора сочетаются в водной среде. Следовательно, вероятно, будет преимущество пригодности для V. cholerae , которое быстро передается следующему хозяину, когда культивируемость все еще высока, а концентрация бактериофагов все еще низкая. В этом обзоре упоминалось несколько моделей, которые предлагают разные объяснения роста и спада вспышек с точки зрения хозяина (клинический спектр и коллективный иммунитет), бактерии (гиперинфекция) и бактериофага (хищничество).Мы объединили несколько опубликованных моделей в одну рабочую диаграмму, чтобы побудить задуматься о том, как эти факторы могут взаимодействовать в естественной среде (). Лучшее понимание того, как функционирует интегрированная модель, может раскрыть возможности для вмешательств в области общественного здравоохранения.

Комбинированная модель передачи холеры с точки зрения хозяина и микроорганизмов

Общая популяция (H) питает пул восприимчивых хозяев (S), которые становятся инфекционными (I) после употребления Vibrio cholerae из окружающей среды. источник, с литическими бактериофагами или без них (Φ).Инфицированные люди имеют симптомы (I symp ) или бессимптомны (I asymp ) и выздоравливают (R) благодаря действиям своей иммунной системы и, возможно, литических бактериофагов, или погибают от инфекции (m). Выздоровевшие люди будут повторно попадать в пул восприимчивых с разной скоростью (//) в зависимости от степени защитного иммунитета. Литические фаги и гиперинфекционные V. cholerae (VC Hi ) выделяются симптоматическим хозяином в различных концентрациях; бессимптомные хозяева выделяют гораздо меньше бактерий (пунктирная линия).Клетки VC Hi быстро переходят к следующему хозяину, сохраняются в окружающей среде в виде культивируемых клеток с неизвестной инфекционностью (VC C ) или распадаются в «активное, но не культивируемое» состояние (VC ABNC ) с пониженной инфекционностью. Все три типа клеток плюс совокупные бактерии (не показаны), вероятно, играют смешанную роль в качестве резервуаров окружающей среды для будущих вспышек.

Заключительные замечания

Модель передачи, которая точно предсказывает масштабы возникающей вспышки, предоставит органам общественного здравоохранения полезную информацию для соответствующего масштабирования их ответных мер.Вмешательства, нацеленные на жизненно важные этапы передачи, могут быть эффективными для предотвращения вспышек. Иммунитет хозяина, гиперинфекция патогенов и фаги — все это факторы, которые можно использовать для борьбы со вспышкой. Например, централизованные центры управления отходами часто терпят неудачу в условиях нехватки ресурсов. Поскольку пациенты с симптомами выделяют более V. cholerae , а V. cholerae в стуле из рисовой воды является гиперинфекционным, вспышки холеры лучше всего остановить у источника, уменьшив воздействие на человека свежевыпущенного гиперинфекционного стула.Другими словами, при сохранении централизованного управления следует поощрять и проверять децентрализованные усилия по целевому управлению отходами в единице домашнего хозяйства. Эта концепция подчеркивает решающую важность уже проверенных, но простых мероприятий в домашних условиях, таких как использование кувшинов с узким горлышком, хлорирование хранящейся воды и мытье рук, для профилактики заболеваний. 110,111 .

Еще многое предстоит узнать об эффективности вакцины в естественных условиях холеры.Отказ от традиционных мер оценки эффективности вакцин путем включения преимуществ коллективного иммунитета продолжит раскрывать истинное влияние как существующих вакцин, так и вакцин, находящихся в разработке. Кроме того, понимание воздействия хищничества бактериофагов и того, как вакцины снижают пул восприимчивости до такой степени, что передача не может продолжаться, являются важными областями для будущих исследований. Ответы на многие вопросы, поставленные в этом обзоре, имеют решающее значение для стран с ограниченными ресурсами, таких как Зимбабве, для оптимизации использования ограниченных запасов вакцины и борьбы с пагубными последствиями неудовлетворительной санитарии.

динамика хозяина, патогена и бактериофага

Abstract

Зимбабве представляет собой самый последний пример трагедии, которая постигает страну и ее народ, когда поражает холера. Вспышка 2008–2009 гг. Быстро распространилась по каждой провинции и привела к уровню смертности, аналогичному тем, которые наблюдались в результате инфекций холеры сто лет назад. В этом обзоре мы выделяем достижения, которые помогут понять, как взаимодействия между хозяином, бактериальным патогеном и литическим бактериофагом могут способствовать возникновению и подавлению вспышек холеры в эндемичных условиях и в развивающихся эпидемических регионах, таких как Зимбабве.

Диарейные болезни, включая холеру, являются ведущей причиной заболеваемости и второй по частоте причиной смерти среди детей в возрасте до 5 лет во всем мире 1,2 . Трудно определить точную заболеваемость и смертность от холеры, поскольку системы эпиднадзора во многих развивающихся странах находятся в зачаточном состоянии, и многие страны не решаются сообщать о случаях холеры в ВОЗ из-за потенциального негативного экономического воздействия этой болезни на торговлю и туризм. Сегодня реальное бремя холеры оценивается в несколько миллионов случаев в год, преимущественно в Азии и Африке. 3 .При оптимальной доставке пероральная регидратационная терапия может снизить уровень летальности с> 20%, наблюдавшихся ранее ( 4–6 ), до <1% 7 . Еще предстоит проделать большую работу, поскольку 27 стран сообщили о показателях летальности, превышающих пороговое значение в 1% в 2007 году (REF. 8).

Возбудитель холеры, грамотрицательная бактерия Vibrio cholerae, является факультативным патогеном, жизненный цикл которого имеет как человеческую, так и экологическую стадию 9,10 . V. cholerae дифференцируется серологически на основе антигена O его липополисахарида (ЛПС) (). Штаммы, продуцирующие токсин холеры ( токсигенных ), серогрупп O1 и O139 вызывают подавляющее большинство заболеваний. Серогруппа O1 подразделяется на два фенотипически различных биотипов , Эль-Тор и классический, второй из которых связан с более ранними пандемиями. Оба биотипа могут быть далее подразделены на два серотипа, Инаба и Огава 7 . За последние 20 лет Эль Тор заменил классический биотип 11 ; однако наследие классического биотипа сохраняется, поскольку появились штаммы Эль-Тор, содержащие токсин классической холеры. 12–14 .Серогруппа O139 впервые появилась в 1992 г. в результате мультигенной замены в кодирующей O антиген-кодирующей области штамма-предшественника O1 El Tor 15 . Хотя серогруппа O139 вызвала разрушительные вспышки в 1990-х годах, штамм Эль Тор остается доминирующим штаммом во всем мире 11,16,17 .

Филогенетическое родство штаммов Vibrio cholerae

На основании антигенности компонента О-антигена липополисахарида внешней мембраны в водной среде существует более 200 серогрупп (O1 – O200) Vibrio cholerae .Только подмножество штаммов серогрупп O1 и O139 являются токсигенными (Tox + ) и, следовательно, способны вызывать холеру при приеме внутрь; такие штаммы отбираются у хозяина. Другие штаммы нетоксигены (Tox ) и отбираются против них. Различные типы О-антигена обозначены цветом внешней мембраны и покрытого оболочкой жгутика (периплазматическое пространство и внутренняя мембрана не показаны). Капсулы присутствуют в подмножестве штаммов. Генотипы разных штаммов обозначены цветом цитоплазмы; обратите внимание, что Tox + O1 и O139 имеют по существу один и тот же генотип, за исключением генов O-антигена.

Патофизиология холеры описана в обширной литературе. Короче говоря, патогенные штаммы несут в себе ключевые факторы вирулентности, которые включают холерный токсин 18 и ко-регулируемый токсин (TCP) 19,20 , самосвязывающийся пилус, который связывает бактериальные клетки вместе 21 , возможно, чтобы противостоять силам сдвига. в тонком кишечнике хозяина. Токсин холеры представляет собой секретируемый токсин субъединицы AB 5 . Пентамер субъединицы B связывает моносиалотетрагексозилганглиозиды на абсорбирующих эпителиальных клетках, вызывая эндоцитоз ферментативной субъединицы A, после чего он рибозилирует АДФ субъединицу G-белка, который контролирует активность аденилилциклазы.Хотя вирулентность является многофакторной, холерный токсин является ключевым фактором, ответственным за обильную секреторную диарею, которая возникает у инфицированных людей. Трансмиссивные элементы, такие как лизогенный бактериофаг , несущий гены токсина холеры 22 и элемент SXT, несущий гены устойчивости к антибиотикам 23 , будут продолжать определять эволюцию V. cholerae .

Биологические факторы и факторы окружающей среды, которые способствуют динамике вспышек холеры, продолжают оставаться предметом интенсивных исследований.Было опубликовано несколько обзорных статей, посвященных важности факторов окружающей среды в распространении вспышек холеры. 24–26 . В этом обзоре мы сосредоточимся скорее на трех биологических факторах, которые, как считается, играют важную роль в возникновении и формировании вспышек холеры: восприимчивость хозяина, вирулентность V. cholerae и литические бактериофаги. Ниже мы обсудим эту троицу факторов, связанных с динамическим характером вспышек холеры.

Человек-хозяин

Клинический спектр

V.cholerae инфекция

Инфекция V. cholerae вызывает клинический спектр, который варьируется от бессимптомной колонизации до холеры гравис, наиболее тяжелой формы болезни (). После приема организмом зараженной пищи или воды V. cholerae колонизирует тонкий кишечник в течение 12–72 часов до появления симптомов. Холера часто начинается с желудочных спазмов и рвоты, за которыми следует диарея, которая может прогрессировать до потери жидкости до 1 литра в час. 27 .Эти потери приводят к серьезному истощению объема жидкости и метаболическому ацидозу, что может привести к коллапсу кровообращения и смерти 7 . Стул с рисовой водой обычно содержит от 10 10 до 10 12 вибрионов на литр. Пациенты с симптомами могут выделять вибрионы до начала болезни 28,29 и будут продолжать выделять организмы в течение 1-2 недель 30,31 . Бессимптомные пациенты обычно выделяют вибрионы со стулом только в течение 1 дня, примерно 10 3 вибрионов на грамм стула 32 .Следовательно, распределение пациентов с симптомами влияет на количество V. cholerae , которые выделяются для последующей передачи.

Таблица 1

Клинический спектр инфекции Vibrio cholerae

Бессимптомная инфекция Легкая инфекция Тяжелая инфекция

Рвота и обильная диарея
Обезвоживание Нет От легкой до легкой От средней до тяжелой (гиповолемический шок)
Характеристики стула Нормальный водный стул Нормальный жидкий стул
Вибрионов на грамм стула До 10 5 До 10 8 10 7 до 10 9 в стуле (и рвотных массах)
Лечение 900 Нет Раствор для пероральной регидратации (O RS) ПРС, внутривенные жидкости и антибиотики
Смертность Нет Нет Без лечения: до 50% Вылечено: менее 1%
9 из них с симптомами варьируется в зависимости от возраста и эндемичности заболевания.В эндемичных условиях, таких как дельта реки Ганг, дети с большей вероятностью будут госпитализированы с тяжелым заболеванием 33 . За последние 20 лет преобладание тяжелых случаев переместилось на детей младшего возраста, с пиком тяжелых случаев в возрасте 2 лет 34 . Напротив, при эпидемических моделях передачи, например, когда V. cholerae вводят иммунологически неинфицированным населением, все возрастные группы кажутся одинаково восприимчивыми к симптоматической инфекции 16,35–37 .

Бессимптомные случаи также могут способствовать распространению микроорганизма, хотя и на гораздо более низком уровне, чем пациенты с симптомами, и могут отражать важный компонент приобретенного иммунитета, который наблюдается в некоторых сообществах. Однако бессимптомные случаи часто трудно задокументировать. Четырехкратное повышение титра вибриоцидного антитела в сыворотке крови является полезной мерой для выявления бессимптомных людей, которые могут быть инфицированы, но от которых невозможно изолировать организм.Используя положительный результат посева из ректального мазка или ответ на вибриоцидные антитела для определения инфекции, недавно было обнаружено, что у бангладешских детей в возрасте до 5 лет вероятность появления симптомов в 2–3 раза выше, чем у детей старше 5 лет 35 . Частота симптомов во всех возрастных группах в этом исследовании составила 57% 35 . Это соответствует показателям симптоматических инфекций, которые были обнаружены в связи с классическими штаммами в более ранней литературе 32,38–40 , но намного выше показателей, зарегистрированных для инфекций Эль-Тор в 1970-е годы 40 .Таким образом, бессимптомные случаи могут составлять примерно половину всех случаев. Будущие исследования иммунологии бессимптомных пациентов помогут оценить их вклад в защитный иммунитет на популяционном уровне.

Восприимчивость к холере

Генетические факторы хозяина и факторы питания влияют на восприимчивость к холере. Антигены группы гистокрови ABH представляют собой набор клеточных и секретируемых гликолипидов и гликопротеинов, которые являются ключевыми детерминантами восприимчивости хозяина к ряду желудочно-кишечных патогенов; они, по-видимому, влияют на специфичность рецептора клетки-хозяина в отношении связывания патогенов и токсинов.Фенотип O соответствует немодифицированному антигену H и связан со сниженным риском заражения V. cholerae . Однако, как только хозяин инфицирован, фенотип О ассоциируется с повышенным риском серьезных симптомов; механизм этого остается неизвестным. Распространенность фенотипа О варьируется среди человеческих популяций; его низкая распространенность в дельте реки Ганг предполагает, что существует отбор против этого фенотипа в эндемичной по холере зоне 35,41,42 .В популяциях с высокой распространенностью группы крови O, например, в странах Латинской Америки, болезнь протекает тяжелее, и потребности в регидратации и госпитализации инфицированных людей существенно выше 43,44 .

Хотя антиген группы крови H является единственным давно признанным генетическим фактором, связанным с восприимчивостью к холере, другие генетические полиморфизмы, вероятно, были выбраны за или против, учитывая исторически высокие показатели смертности от холеры.Например, недавнее исследование связывало тяжелую холеру с вариантом LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) 45 , консервативного белка врожденного иммунитета. Экспрессия LPLUNC1 повышается в эпителии тонкой кишки во время острой холеры и может влиять на течение инфекции V. cholerae 46 .

Недоедание, измеряемое по задержке линейного роста, не является фактором риска заражения V. cholerae 35 .Однако дефицит ретинола (витамина А), питательного микроэлемента, который способствует иммунитету слизистых оболочек, является фактором риска, связанным как с инфекцией V. cholerae , так и с развитием симптоматического заболевания 35 . Цинк, еще один питательный микроэлемент, который способствует иммунитету слизистых оболочек, может истощаться во время диарейного заболевания. 47 . Оральный цинк устраняет этот дефицит у детей, что приводит к значительному сокращению объема стула и времени до прекращения диареи 44 .

Защитный иммунитет

Несколько исследований демонстрируют, что клинически очевидная инфекция V. cholerae индуцирует защитный иммунитет против последующей инфекции (ВСТАВКА 1). Заражение североамериканских добровольцев классическим биотипом и биотипом Эль-Тор обеспечивало 100% и 90% защиту соответственно от последующего заражения 31,48 . Аналогичным образом, в эндемических условиях было обнаружено, что более 90% пациентов с тяжелым заболеванием, вызванным инфекцией классическим биотипом, были защищены от инфекции в будущем, на основании наблюдаемых и ожидаемых показателей госпитализации в связи со вторым эпизодом холеры в США. это население 33 ; аналогичные результаты были получены в отдельном исследовании 49 .Механизм этого защитного иммунитета против инфекции и болезни V. cholerae неизвестен.

Ящик 1 | Иммунный ответ человека на

Vibrio cholerae

Врожденный ответ

Холера считается прототипом невоспалительной инфекции. Часто отсутствуют грубые изменения слизистой оболочки кишечника или архитектурной целостности тонкой кишки. Однако наблюдается повышенная регуляция провоспалительных цитокинов (включая интерлейкин-1β и фактор некроза опухоли), экспрессии различных бактерицидных белков и миграции нейтрофилов в собственную пластинку во время острой холеры.Естественная вариабельность врожденного иммунного ответа может влиять на восприимчивость, что подтверждается открытием, что полиморфизм в промоторной области гена LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) связан с повышенным риском холеры.

Адаптивный ответ

Как адаптивный иммунный ответ на холеру обеспечивает защиту от последующего заболевания, неизвестно. Поскольку Vibrio cholerae неинвазивен, было высказано предположение, что секреторный иммуноглобулин А кишечника (sIgA) защищает от колонизации слизистой оболочки.Примерно через 8 дней после начала холеры наблюдается пик циркуляции антиген-специфических лимфоцитов V. cholerae , которые экспрессируют хемокиновые рецепторы кишечника (см. Рисунок) 112 . Эти лимфоциты вскоре становятся необнаруживаемыми в крови, поскольку они возвращаются на слизистую оболочку кишечника, где они приводят к увеличению секреции sIgA в кишечнике. Реакции сывороточных антител, такие как реакция вибриоцидных антител, также достигают максимума через 1-3 недели после заражения. Хотя высокие сывороточные титры вибриоцидных антител и IgA, специфичного к холерному токсину, коррелируют с защитой от инфекции, эти антитела снижаются до исходного уровня через год после заражения, задолго до того, как защитный иммунитет к холере ослабевает.Точно так же у добровольцев, инфицированных V. cholerae , уровни sIgA слизистой оболочки снижаются до исходного уровня в течение нескольких месяцев. Однако, когда добровольцев, у которых больше нет определяемых антител, повторно провоцируют антигенов V. cholerae , они демонстрируют стойкую способность вызывать анамнестический иммунный ответ, развивая пиковую кишечную секрецию антител так же быстро, как в течение трех дней. Следовательно, возможно, что скорость анамнестического ответа на повторное воздействие, а не заранее сформированные антитела, может опосредовать защиту от холеры.Это подтверждается недавними данными о том, что холера вызывает ответ В-клеток памяти, который выявляется в течение по крайней мере 1 года после заражения холерой 113 .

Выявлено несколько коррелятов иммунитета. Лучше всего охарактеризованным серологическим маркером иммунитета является титр сывороточных вибриоцидных антител. Это антитело является комплемент-зависимым бактерицидным антителом, титр которого заметно увеличивается после заболевания, но снижается до исходного уровня через 6–9 месяцев 7 . В Бангладеш вибриоцидные антитела обнаруживаются у большинства людей в возрасте 10–15 лет и связаны со снижением риска инфицирования.Поскольку V. cholerae является неинвазивным патогеном, эти сывороточные антитела могут не вносить непосредственный вклад в защиту на уровне слизистой оболочки кишечника, но они могут быть полезны для оценки степени защитного иммунитета на уровне популяции. Антитела иммуноглобулина A, специфичные к TCP, LPS или субъединице B холерного токсина, коррелируют с защитой от последующей инфекции и болезни 35 .

Полевые испытания вакцины обеспечивают контролируемую оценку устойчивости адаптивных иммунных ответов к В.холера . В крупнейшем контролируемом исследовании 62 285 участников в Бангладеш были рандомизированы для получения 3 пероральных доз (с интервалом в 6 недель) комбинации убитых целых клеток (Эль Тор и классические) плюс субъединица B холерного токсина (вакцина B – WC), цельноклеточный компонент без B-субъединицы (вакцина WC) или убитый Escherichia coli K12 в качестве контроля. Через 3 года наблюдения две вакцины (B – WC и WC) имели 50% и 52% защитную эффективность, соответственно 50 . Для детей младше 5 лет эффективность составила 23–26%.Через 6 месяцев наблюдения вакцина B – WC дала 85% защиту. 51 . Ведутся споры о том, демонстрируют ли эти данные эффективность, достаточную для широкомасштабного распространения. В настоящее время предпринимаются усилия по созданию новых вакцин для обеспечения более высоких и устойчивых ответов у реципиентов, а также для снижения производственных затрат с целью преодоления как иммунологических, так и производственных препятствий, которые ограничивают применимость существующих вакцин против холеры. 52–55 .

Роль, которую коллективный иммунитет играет в замедлении передачи холеры, недавно стала оценена.При испытаниях эффективности вакцины отдельные пациенты рандомизируются, чтобы гарантировать, что защитная эффективность отражает только прямой эффект вакцины 56 . Это означает, что при лицензировании вакцин не учитываются их преимущества на уровне населения. Обсуждаемое выше испытание вакцины B – WC имело уровень охвата от 4% до 65% в разных регионах 50,57 . Когда уровни заболеваемости холерой сравнивались с показателями охвата вакцинацией в конкретных регионах, было обнаружено, что заболеваемость среди реципиентов плацебо обратно коррелировала с уровнем охвата прививками 57 : там, где охват был высоким, даже среди тех, кто этого не сделал. Получившие вакцину, вероятность заболеть холерой по-прежнему на четверть ниже, чем у невакцинированных лиц в районах с низким охватом.Когда коллективный иммунитет включен в имитационные модели эффективности вакцины, охват вакцинацией B – WC 50% в эндемичных районах приводит к снижению общего числа случаев на 93%. 58 . Взятые вместе, эти исследования доказывают, что вакцина B-WC может обеспечить достаточную защиту для широкомасштабной вакцинации в эндемичных регионах и что коллективный иммунитет, вероятно, будет играть важную роль в ограничении передачи холеры.

Передача с точки зрения хозяина

Несколько групп создали математические модели, использующие перспективы как хозяина, так и патогена, чтобы помочь объяснить и предсказать природу вспышек холеры.Цель большинства этих моделей — точно отразить резкий рост и снижение заболеваемости холерой, которое наблюдается два раза в год в регионах вокруг Бенгальского залива. Модель была построена для включения показателей передачи, фактора сезонных колебаний и расчета количества восприимчивых людей на основе различного защитного иммунитета от прошлой инфекции. 59–61 . Эти идеи были основаны на проверке гипотез о том, что высокое соотношение бессимптомных и симптоматических случаев связано с разрешением вспышки и что короткий интервал защитного иммунитета (2–12 недель) после заражения допускает последующие вспышки, которые наблюдаются в Бангладеш 62 .Результаты показывают, что сочетание многих бессимптомных случаев и недолговечного иммунитета, а не молчаливых шеддеров , дает модель, которая лучше всего отражает эпидемиологические данные из Западной Бенгалии. У модели есть ограничения: она предполагает соотношение бессимптомных и симптоматических случаев, которое намного выше, чем наблюдаемое в последние годы, и она была протестирована с использованием показателей смертности, которые связаны с клинически определенной холерой из Западной Бенгалии между 1891 и 1940 годами — эпохой до открытия. ротавирусной и энтеротоксигенной E.coli , которые являются смешивающими факторами. Несмотря на свои недостатки, эти модели улучшают наше понимание сложной динамики вспышек и показывают, насколько мощной может быть реакция хозяина в ограничении передачи. Новые модели передачи холеры должны по-прежнему включать факторы сезонных колебаний, соотношение бессимптомных и симптоматических случаев и темпы снижения защитного иммунитета.

Возбудитель

Инфекционные дозы в моделях на животных

Инфекция человека-хозяина представляет собой многоступенчатый процесс: V.cholerae необходимо принимать внутрь в дозе, достаточной для преодоления врожденной иммунной защиты, затем экспрессии факторов вирулентности для колонизации тонкой кишки и, наконец, для координации выхода из организма хозяина для облегчения передачи 63 (). Модели холеры на животных в значительной степени являются показателями успешности первых двух стадий 64 . Используя модель инфекции у новорожденных мышей, было показано, что V. cholerae , которые выделяются с рисовым водяным стулом человека, находятся в гиперинфекционном состоянии, демонстрируя ID 50 из 10–100 клеток по сравнению с примерно 500 клетками для В.cholerae , выращенный in vitro 65–67 . Гиперинфекция также была задокументирована у Citrobacter rodentium 68 , а гиперинфекционный V. cholerae может быть воспроизведен при прохождении через мышиную модель инфекции 68,69 . Определение и фенотип гиперинфективности противоречивы из-за сложностей при выборе наиболее подходящих условий культивирования для роста контрольного штамма.

Жизненный цикл патогенного Vibrio cholerae

Токсигенные штаммы Vibrio cholerae сохраняются в водной среде вместе с нетоксигенными штаммами, чему способствует образование биопленок на биологических поверхностях и использование хитина в качестве источника углерода и азота.При попадании этих адаптированных к водной среде бактерий в загрязненную пищу или воду токсигенные штаммы колонизируют тонкий кишечник, размножаются, выделяют токсин холеры и возвращаются в окружающую среду хозяином при секреторной диарее. Патогенные микроорганизмы, выделяемые калом, находятся в преходящем гиперинфекционном состоянии, которое способствует усилению вспышки за счет передачи последующим хозяевам.

Молекулярные механизмы, которые способствуют гиперинфективности у V. cholerae , многофакторны.Исследования на микроматрицах показали, что глобальный профиль транскрипции гиперинфекционных V. cholerae из рисового водяного стула отличается от такового у V. cholerae , выращенных in vitro или верхних отделов тонкой кишки V. cholerae , выведенных в рвотных массах 65, 70,71 (). Большинство известных генов вирулентности, включая гены холерного токсина и TCP, подавляются в стуле из рисовой воды, но механизм этого подавления остается неизвестным. Еще одна уникальная особенность — подавление генов хемотаксиса, что удивительно, учитывая, что планктонные вибрионы, выделяемые пациентами, являются жгутиками и очень подвижны.Было показано, что это подавление хемотаксиса является одним из компонентов гиперинфективности, потому что подвижные, но не хемотаксирующие мутанты V. cholerae являются гиперинфекционными 66,72,73 .

Паттерны экспрессии гена Vibrio cholerae на разных стадиях жизненного цикла

При проглатывании (нижняя правая панель) Vibrio cholerae использует подвижность и муциназы для проникновения через слизистый гель и N -ацетилглюкозамин-связывающий белок A ( GbpA) и другие факторы колонизации эпителия тонкой кишки.Существенные изменения в экспрессии генов сопровождают этот переход от пруда к острой инфекции, включая, помимо прочего, индукцию vieA, которая кодирует фосфодиэстеразу, гидролизующую вторичный мессенджер циклический ди-GMP, и гены, регулируемые ToxR, включая гены холерного токсина и самоагрегирующиеся пилусы, регулируемые токсинами (TCP). Кроме того, репрессируются несколько генов, например, гены хитин-связывающего маннозу-чувствительного гемагглютинина пилуса (MSHA) и стрессового сигма-фактора RpoS.На поздней стадии инфекции (нижняя левая панель) V. cholerae снова изменяет экспрессию своего гена, чтобы отделиться от эпителия — «реакция бегства» — и подготовиться к передаче другому хозяину (например, распространение в домашних условиях). ) или попадание в водную среду. Изменения на поздних стадиях включают индукцию генов синтеза c-di-GMP (дигуанилилциклазы), систем поглощения питательных веществ (таких как регулон регуляции поглощения железа (Fur)) и подвижности (Fla), а также репрессию таких генов, как для хемотаксиса (Che) и регулона ToxR.Возникающее в результате состояние «подвижное, но не хемотаксическое» способствует гиперинфективности. Если бактерии, выделяющиеся со стулом, не попадают в организм другого хозяина в течение короткого периода времени, то их ждет одна из двух судьб (верхняя панель): укоренение в водной среде путем нахождения подходящих источников питательных веществ, таких как хитин, или распад в « активную среду ». но некультивируемое состояние. При воздействии хитина V. cholerae индуцирует несколько генов, участвующих в присоединении и катаболизме хитина (регулон ChiS), а также гены, участвующие в генетической компетентности (регулон TfoX).Образование биопленок на поверхности опосредуется индукцией регулона Vps, который кодирует внеклеточный полисахарид. Во время перехода в активное, но не культивируемое состояние, происходят большие изменения в экспрессии генов, поскольку V. cholerae пытается адаптироваться к условиям с низким содержанием питательных веществ. К ним относятся индукция генов фосфатного и азотного голодания (phoB и glnB-1 соответственно) и репрессия генов трансляционного аппарата.

Транскриптом V. cholerae , пассированный от животных, также уникален и был выявлен в двух недавних исследованиях.Во-первых, существует скоординированная «реакция бегства», которая позволяет организму отделяться от ворсинок кишечника, готовясь к выходу из организма хозяина; это регулируется стрессом и стационарной фазой сигма-фактора РНК-полимеразы RpoS 74 . Во-вторых, на более поздних стадиях заражения животных, V. cholerae активирует экспрессию генов, которые не требуются для инфекции, но важны для выживания при переходе в водную среду 75 . Эта предварительная индукция генов выживания в окружающей среде на поздних этапах инфекции может подготовить организм к жесткому селективному давлению в воде пруда, облегчая передачу 24,65 .В большинстве описанных выше исследований бактериальные клетки, составлявшие инфекционную дозу, были планктонными клетками, а не агрегатами. Было проведено одно исследование с участием добровольцев, в котором добровольцам вводили V. cholerae в морщинистой форме (то есть агрегатной и продуцирующей экзополисахариды); Инфекционная доза была аналогична дозе, наблюдаемой для планктонных форм, а морщинистые формы выделялись добровольцами 76 . Кроме того, люди выделяют V. cholerae в виде сложных биопленко-подобных агрегатов 67,77,78 .Идентификатор ID 50 V. cholerae выделяется в совокупности, и роль, которую эти совокупности играют в передаче, еще предстоит определить.

Инфекционная доза у людей

Инфекционная доза V. cholerae у людей сильно варьируется в зависимости от бактериального штамма и хозяина. Дозы 10 8 –10 11 клеток требовались для обеспечения последовательной колонизации у здоровых добровольцев из Северной Америки 7,29,31 . Инфекционная доза снижается до 10 4 –10 8 при использовании бикарбонатного буфера для нейтрализации желудочной кислоты незадолго до инокуляции; этот метод дает 90% заражений 7,29,31 .В домашнем хозяйстве пища может действовать как кислотный буфер; В исследованиях на добровольцах введение бактерии как часть «еды» из риса, рыбы, заварного крема и обезжиренного молока дало результаты, сравнимые с результатами, наблюдаемыми при одновременном введении бактерий и бикарбоната 79 . В эндемичных условиях инфекционная доза неизвестна. Подсчет V. cholerae в образцах домашнего хозяйства и окружающей среды исторически сложен, требует быстрого реагирования и использования флуоресцентной микроскопии для подсчета тех бактерий, культивирование которых может оказаться затруднительным. 80 .

Клиническое наблюдение, что буферная кислота желудочного сока снижает инфекционную дозу, предполагает, что бактериальные гены, участвующие в кислотной устойчивости, могут способствовать вирулентности. Сигнатурный мутагенез (STM) был использован для поиска подмножества генов вирулентности, которые вносят вклад в кислотостойкость in vitro 81 . Удаление этих генов ослабило V. cholerae в модели инфекции у новорожденных мышей, что подтверждает их роль в вирулентности. Кроме того, обнажая В. дикого типа.cholerae к кислоте непосредственно перед инокуляцией мышей давало большое конкурентное преимущество перед неадаптированными к кислоте бактериями 82 . Эти данные, наряду с другими, демонстрируют, что бактерии, выращенные in vitro , могут стать более заразными в результате воздействия стресса. Кроме того, эти результаты могут иметь клиническое значение в тех регионах мира, где распространено пониженное производство кислоты в желудке (ахлоргидрия), вторичное по отношению к инфекции Helicobacter pylori, например, Бангладеш 7 .

Передача с точки зрения патогена

Роль, которую гиперинфекция играет в быстром распространении холеры среди населения в начале вспышки, остается непроверенной. V. cholerae остается гиперинфекционным в течение как минимум 5 часов после попадания от пациентов в водную среду, что позволяет предположить, что гиперинфекция играет особую роль в передаче инфекции в районах с высокой плотностью населения, где существует вероятность контакта с организмом другого человека. в относительно короткие сроки 65,70 .Одна модель передачи холеры предполагает, что вспышка начинается, когда либо уже инфицированный индексный случай мигрирует и загрязняет новую территорию, либо V. cholerae , потребляемая из естественного водоема окружающей среды, создает новый индексный случай у постоянного населения. В обоих сценариях не исключено, что ускорение вспышки является результатом быстрого распространения гиперинфекционного вируса V. cholerae от человека к человеку при кратковременном нахождении в окружающей среде.Модели передачи, которые допускают только случайное попадание V. cholerae в окружающую среду, не предсказывают резкого роста числа случаев, которые наблюдаются в начале вспышек по всему миру, включая те, которые происходят раз в два года в Бангладеш 11 . Однако модели, которые включают гиперинфекцию 83 , лучше отражают этот резкий подъем.

Поддержание передачи через водоемы

Эндемичная холера встречается в регионах с естественными водными резервуарами токсигенных и нетоксигенных V.cholerae , где бактерии могут сохраняться либо в свободноживущем состоянии, либо в ассоциации с фитопланктоном 84–86 , зоопланктоном 85–88 или биотическим и абиотическим детритом 89,90 . Эти взаимодействия могут быть как полезными, так и антагонистическими. 91,92 . Ассоциации вообще не случайны. Например, V. cholerae развил механизмы для присоединения, разложения и использования хитина в качестве источника углерода и азота 93–95 ().Для экологических изолятов методы ДНК-типирования, основанные на секвенировании гипервариабельных локусов повторов короткой последовательности, начали лучше определять взаимосвязь между нетоксигенными и токсигенными V. cholerae . Было обнаружено, что два сельских региона, разделенных 80 км в дельте реки Ганг, содержат отдельные, разнообразные штаммы из экологических и клинических условий 96 . Изоляты из окружающей среды состояли как из токсигенных, так и из нетоксигенных штаммов O1 El Tor и O139 на фоне нетоксигенных штаммов, представляющих многие серогруппы.Напротив, клинические изоляты были строго токсигенными O1 El Tor и O139, но относились к разным типам штаммов. Эти результаты демонстрируют, что в организме хозяина токсигенные штаммы обладают селективным преимуществом перед нетоксигенными штаммами из окружающей среды. Взаимосвязь между экологическими и клиническими штаммами может быть разной в других регионах мира и, вероятно, будет варьироваться в зависимости от окружающей среды, санитарии, инфраструктуры и плотности населения.

Селективное давление в водной среде

Некоторые бактериальные патогены, в том числе V.cholerae , теряют способность культивироваться на стандартных средах после переноса от хозяина или лаборатории в водную среду 24,97 . Этот фенотип традиционно известен как «жизнеспособное, но не культивируемое» (VBNC) состояние, поскольку клетки сохраняют способность к основным метаболическим процессам, таким как синтез белка, дыхание и поддержание целостности мембран, несмотря на их неспособность культивироваться 24 . Альтернативный, более консервативный термин, который применяется к этому состоянию, — «активный, но не культивируемый» (ABNC), поскольку остается неясным, живы ли еще бактерии, утратившие культивирование на стандартных средах 98 .

V. cholerae может быстро превратиться в ABNC, когда покидает человека-хозяина и попадает в водную среду. Исследования с участием V. cholerae , полученных от пациента и in vitro , которые подвергались диализу в прудовой воде, продемонстрировали снижение культивирования на 60% и 90% через 5 часов и 24 часа, соответственно, 65 . Анализ микроматрицы продемонстрировал быстрые и поразительные изменения транскрипции, когда бактерии входили в состояние ABNC 65 . Эти изменения включали индукцию генов поглощения фосфатов и фиксированного азота и подавление генов синтеза белка и энергетического метаболизма, что согласуется с низкими уровнями источников углерода, фосфатов и фиксированного азота, которые часто встречаются в водной среде.Остается проверить, будет ли включение твердых частиц, которые были отфильтрованы из воды пруда в вышеупомянутом исследовании, продлить культивирование V. cholerae . Учитывая возможность такого быстрого снижения культивируемости, исследователи задали вопрос, является ли большинство из клеток V. cholerae , заражающих людей из окружающей среды, ABNC или культивируемыми клетками. Одна из гипотез гласит, что если культивируемые клетки более заразны, чем клетки ABNC, то ID 50 , рассчитанный по общему количеству клеток, будет увеличиваться по мере уменьшения процента культивируемых клеток в популяции.Это было подтверждено в недавних экспериментах, предполагающих, что основными виновниками инфицирования человека, вероятно, являются культивируемые клеток V. cholerae 65 . В будущих математических моделях передачи V. cholerae должна быть учтена возможность уменьшения скорости культивирования.

V. cholerae литический бактериофаг

Биология вибриофагов

Восемьдесят лет назад было высказано предположение, что бактериофаги могут контролировать естественные популяции патогенов 99,100 .Более поздние исследования в области морской микробиологии выявили элегантный баланс между бактериофагами и их цианобактериальной добычей 101 . С клинической точки зрения бактериофаги в принципе могут использоваться для профилактики или лечения инфекций. Действительно, документально подтверждена «фаговая терапия» против холеры и других заболеваний (ВСТАВКА 2). Существует не менее 200 видов бактериофагов, которые инфицируют V. cholerae , известных как вибриофаги 102,103 . Нитевидный лизогенный вибриофаг CTXΦ является одним из наиболее охарактеризованных, поскольку он несет гены, кодирующие токсин холеры 22 .Первым секвенированным геномом хвостатого вибриофага был геном κ139; этот вибриофаг может быть как лизогенным, так и литическим. Основным механизмом, с помощью которого V. cholerae O1 становится устойчивым к κ139 и многим другим вибриофагам, является мутация кластера генов rfb , который кодирует ферменты для синтеза LPS 104 . В отсутствие рецептора антигена LPS O вибриофаг не может связываться или инфицировать бактериальную клетку. Все rfb -нулевые мутанты V. cholerae O1, которые были протестированы на сегодняшний день, аттенуированы 65,67,105 .

Ящик 2 | Исследование бактериофагов

В 1915–1917 годах Twort 114 и d’Hérelle 115 независимо друг от друга открыли бактериофаги. Д’Эрелль определил, что бактериальная инфекция на животных моделях может быть ослаблена бактериофагами, и в 1925 году состояние пациентов с бубонной чумой улучшилось после того, как д’Эрелль ввел бактериофаги непосредственно в их бубоны (увеличенные лимфатические узлы). 116 . Эти открытия привели к исследованию бактериофагов, в задачу которого входило изучение терапии бактериофагами холеры в Индии 116 .В их первом испытании терапии сравнивали 244 нелеченных пациента с холерой и 219 пациентов с холерой, которых лечили вибриофагами; в нелеченой группе смертность составила 20%, тогда как в обработанной группе — 6,8% (χ 2 , p <0,01). Другие исследования показали аналогичные результаты 5,116,117 . Несмотря на некоторые ограничения, характерные для той эпохи, расследование добилось достаточного успеха, чтобы расширить свои усилия. 5 .

За 1928, 1929 и 1934 годы, всего 36 000, 130 823 и 871 316 доз вибриофагов были подготовлены и распространены сотрудниками по расследованию в то время, когда начались вспышки в конкретных исследуемых сообществах в Индии 116 .Вибриофаги также распространялись в общественных источниках питьевой воды для профилактики. Смертность от холеры сравнивалась с контрольными сообществами до и после вмешательств. Трехлетний уровень смертности от холеры снизился с 30 до 2 на 10 000 в регионах, которые лечились вибриофагами 117 . Хотя эти исследования имели несколько ограничений, они предоставляют единственные доступные данные об эффективности терапии вибриофагами. Достижения в области регидратации и антибиотикотерапии в 1930-х и 1940-х годах сделали испытания бактериофагов, основанные на конечных точках смертности, неэтичными и статистически сложными 116,118 .

Вибриофаги в окружающей среде

В 1930-х годах было обнаружено, что случаи холеры положительно коррелировали с изоляцией вибриофагов в водной среде 106 . В наше время была описана отсроченная положительная согласованность между ростом числа случаев холеры и последующим ростом вибриофагов в окружающей среде. 107 . Модель, разработанная Jensen et al. предсказывает, что если вспышка будет инициирована увеличением В.cholerae в окружающей среде, плотность вибриофагов впоследствии будет увеличиваться, что в конечном итоге будет способствовать сокращению вспышки 108 . В Международном центре исследований диарейных заболеваний в Бангладеш (ICDDRB) рост случаев холеры был связан с согласованным, но отсроченным увеличением доли больных холерой с вибриофагами в стуле 109 . Вибриофаги, идентифицированные в этом исследовании, были литическими вибриофагами (JSF4), хотя у пациентов можно выделить несколько типов вибриофагов 107 .Титры вибриофагов в стуле из рисовой воды варьировались от 10 2 до 10 8 бляшкообразующих единиц на миллилитр, что согласуется с другими публикациями 65,67 . Несмотря на присутствие литических вибриофагов, все стула были положительными на V. cholerae и V. cholerae , как правило, по количеству вибриофагов, по крайней мере, на порядок. Последующие исследования показали, что большинство бактериальных изолятов из стула все еще чувствительны к вибриофагам 65,67 .Пока неясно, почему вибриофаги в кишечнике человека не могут избавиться от инфекции V. cholerae , но эта «неудача» может играть важную роль в распространении клональной экспансии фагов во время вспышек. 109 .

Передача с точки зрения вибриофага

Современные эксперименты начали проверять гипотезу о том, что фаги могут ослаблять бактериальную передачу. Например, тесты подвижности с использованием микроскопии в темном поле были использованы для быстрого скрининга стула из рисовой воды на наличие вибриофагов; стул, который был отрицательным в темном поле (не содержал подвижных вибрионов), с большей вероятностью содержал литические вибриофаги и имел низкое количество культивируемых клеток, но схожее общее количество клеток 77 .С помощью этого косвенного измерения для фагов было обнаружено, что по крайней мере половина пациентов с холерой, которые наблюдались в течение 5-летнего периода в ICDDRB, содержали вибриофаги, а домашние контакты пациентов с положительным индексом вибриофагов имели меньшую вероятность инфицирования. с V. cholerae , чем люди, которые контактировали с пациентом, который не был фагоположительным 77 . Эти результаты согласуются с выводом о десятикратном снижении инфекционной дозы В.cholerae , когда в стуле хозяина есть вибриофаги 67 .

V. cholerae обычно превосходит литические бактериофаги сразу после пассажа от хозяина 65 , 67 . В лабораторных экспериментах с использованием стула из рисовой воды, выращенного человеком, бактериофаги имеют начальный всплеск репликации в течение первых нескольких часов в водной среде и могут достигать отношения бактериофагов к бактериям примерно 1: 1 за 24 часа 65,67 .Хотя гиперинфекция может сохраняться в течение нескольких часов после пассажа от хозяина 65,70 , потеря культивирования (обсуждалось выше) и расцвет бактериофагов в водной среде, вероятно, объединяются, чтобы блокировать передачу 65 . Контрольные эксперименты с , полученным in vitro , V. cholerae и бактериофагами подтверждают, что бактериофаги могут ограничивать бремя инфекции 65,67 . Однако бактериофаги никогда не могут полностью блокировать инфекцию, поскольку мутанты V.cholerae , у которых отсутствует зрелый LPS, избегают хищничества и колонизируют мышей, хотя и в меньшем количестве. Как уже упоминалось, мутанты LPS ослаблены и могут быть потеряны в естественном жизненном цикле V. cholerae 65,67,105 .

Таким образом, динамическое взаимодействие между бактериофагом и бактерией в воде пруда предполагает, что модель передачи холеры должна включать в себя меру быстрого снижения способности бактерий к культивированию и уничтожения бактериофагами. В закрытой экспериментальной системе передача В.cholerae можно свести к минимуму, если эти два фактора сочетаются в водной среде. Следовательно, вероятно, будет преимущество пригодности для V. cholerae , которое быстро передается следующему хозяину, когда культивируемость все еще высока, а концентрация бактериофагов все еще низкая. В этом обзоре упоминалось несколько моделей, которые предлагают разные объяснения роста и спада вспышек с точки зрения хозяина (клинический спектр и коллективный иммунитет), бактерии (гиперинфекция) и бактериофага (хищничество).Мы объединили несколько опубликованных моделей в одну рабочую диаграмму, чтобы побудить задуматься о том, как эти факторы могут взаимодействовать в естественной среде (). Лучшее понимание того, как функционирует интегрированная модель, может раскрыть возможности для вмешательств в области общественного здравоохранения.

Комбинированная модель передачи холеры с точки зрения хозяина и микроорганизмов

Общая популяция (H) питает пул восприимчивых хозяев (S), которые становятся инфекционными (I) после употребления Vibrio cholerae из окружающей среды. источник, с литическими бактериофагами или без них (Φ).Инфицированные люди имеют симптомы (I symp ) или бессимптомны (I asymp ) и выздоравливают (R) благодаря действиям своей иммунной системы и, возможно, литических бактериофагов, или погибают от инфекции (m). Выздоровевшие люди будут повторно попадать в пул восприимчивых с разной скоростью (//) в зависимости от степени защитного иммунитета. Литические фаги и гиперинфекционные V. cholerae (VC Hi ) выделяются симптоматическим хозяином в различных концентрациях; бессимптомные хозяева выделяют гораздо меньше бактерий (пунктирная линия).Клетки VC Hi быстро переходят к следующему хозяину, сохраняются в окружающей среде в виде культивируемых клеток с неизвестной инфекционностью (VC C ) или распадаются в «активное, но не культивируемое» состояние (VC ABNC ) с пониженной инфекционностью. Все три типа клеток плюс совокупные бактерии (не показаны), вероятно, играют смешанную роль в качестве резервуаров окружающей среды для будущих вспышек.

Заключительные замечания

Модель передачи, которая точно предсказывает масштабы возникающей вспышки, предоставит органам общественного здравоохранения полезную информацию для соответствующего масштабирования их ответных мер.Вмешательства, нацеленные на жизненно важные этапы передачи, могут быть эффективными для предотвращения вспышек. Иммунитет хозяина, гиперинфекция патогенов и фаги — все это факторы, которые можно использовать для борьбы со вспышкой. Например, централизованные центры управления отходами часто терпят неудачу в условиях нехватки ресурсов. Поскольку пациенты с симптомами выделяют более V. cholerae , а V. cholerae в стуле из рисовой воды является гиперинфекционным, вспышки холеры лучше всего остановить у источника, уменьшив воздействие на человека свежевыпущенного гиперинфекционного стула.Другими словами, при сохранении централизованного управления следует поощрять и проверять децентрализованные усилия по целевому управлению отходами в единице домашнего хозяйства. Эта концепция подчеркивает решающую важность уже проверенных, но простых мероприятий в домашних условиях, таких как использование кувшинов с узким горлышком, хлорирование хранящейся воды и мытье рук, для профилактики заболеваний. 110,111 .

Еще многое предстоит узнать об эффективности вакцины в естественных условиях холеры.Отказ от традиционных мер оценки эффективности вакцин путем включения преимуществ коллективного иммунитета продолжит раскрывать истинное влияние как существующих вакцин, так и вакцин, находящихся в разработке. Кроме того, понимание воздействия хищничества бактериофагов и того, как вакцины снижают пул восприимчивости до такой степени, что передача не может продолжаться, являются важными областями для будущих исследований. Ответы на многие вопросы, поставленные в этом обзоре, имеют решающее значение для стран с ограниченными ресурсами, таких как Зимбабве, для оптимизации использования ограниченных запасов вакцины и борьбы с пагубными последствиями неудовлетворительной санитарии.

динамика хозяина, патогена и бактериофага

Abstract

Зимбабве представляет собой самый последний пример трагедии, которая постигает страну и ее народ, когда поражает холера. Вспышка 2008–2009 гг. Быстро распространилась по каждой провинции и привела к уровню смертности, аналогичному тем, которые наблюдались в результате инфекций холеры сто лет назад. В этом обзоре мы выделяем достижения, которые помогут понять, как взаимодействия между хозяином, бактериальным патогеном и литическим бактериофагом могут способствовать возникновению и подавлению вспышек холеры в эндемичных условиях и в развивающихся эпидемических регионах, таких как Зимбабве.

Диарейные болезни, включая холеру, являются ведущей причиной заболеваемости и второй по частоте причиной смерти среди детей в возрасте до 5 лет во всем мире 1,2 . Трудно определить точную заболеваемость и смертность от холеры, поскольку системы эпиднадзора во многих развивающихся странах находятся в зачаточном состоянии, и многие страны не решаются сообщать о случаях холеры в ВОЗ из-за потенциального негативного экономического воздействия этой болезни на торговлю и туризм. Сегодня реальное бремя холеры оценивается в несколько миллионов случаев в год, преимущественно в Азии и Африке. 3 .При оптимальной доставке пероральная регидратационная терапия может снизить уровень летальности с> 20%, наблюдавшихся ранее ( 4–6 ), до <1% 7 . Еще предстоит проделать большую работу, поскольку 27 стран сообщили о показателях летальности, превышающих пороговое значение в 1% в 2007 году (REF. 8).

Возбудитель холеры, грамотрицательная бактерия Vibrio cholerae, является факультативным патогеном, жизненный цикл которого имеет как человеческую, так и экологическую стадию 9,10 . V. cholerae дифференцируется серологически на основе антигена O его липополисахарида (ЛПС) (). Штаммы, продуцирующие токсин холеры ( токсигенных ), серогрупп O1 и O139 вызывают подавляющее большинство заболеваний. Серогруппа O1 подразделяется на два фенотипически различных биотипов , Эль-Тор и классический, второй из которых связан с более ранними пандемиями. Оба биотипа могут быть далее подразделены на два серотипа, Инаба и Огава 7 . За последние 20 лет Эль Тор заменил классический биотип 11 ; однако наследие классического биотипа сохраняется, поскольку появились штаммы Эль-Тор, содержащие токсин классической холеры. 12–14 .Серогруппа O139 впервые появилась в 1992 г. в результате мультигенной замены в кодирующей O антиген-кодирующей области штамма-предшественника O1 El Tor 15 . Хотя серогруппа O139 вызвала разрушительные вспышки в 1990-х годах, штамм Эль Тор остается доминирующим штаммом во всем мире 11,16,17 .

Филогенетическое родство штаммов Vibrio cholerae

На основании антигенности компонента О-антигена липополисахарида внешней мембраны в водной среде существует более 200 серогрупп (O1 – O200) Vibrio cholerae .Только подмножество штаммов серогрупп O1 и O139 являются токсигенными (Tox + ) и, следовательно, способны вызывать холеру при приеме внутрь; такие штаммы отбираются у хозяина. Другие штаммы нетоксигены (Tox ) и отбираются против них. Различные типы О-антигена обозначены цветом внешней мембраны и покрытого оболочкой жгутика (периплазматическое пространство и внутренняя мембрана не показаны). Капсулы присутствуют в подмножестве штаммов. Генотипы разных штаммов обозначены цветом цитоплазмы; обратите внимание, что Tox + O1 и O139 имеют по существу один и тот же генотип, за исключением генов O-антигена.

Патофизиология холеры описана в обширной литературе. Короче говоря, патогенные штаммы несут в себе ключевые факторы вирулентности, которые включают холерный токсин 18 и ко-регулируемый токсин (TCP) 19,20 , самосвязывающийся пилус, который связывает бактериальные клетки вместе 21 , возможно, чтобы противостоять силам сдвига. в тонком кишечнике хозяина. Токсин холеры представляет собой секретируемый токсин субъединицы AB 5 . Пентамер субъединицы B связывает моносиалотетрагексозилганглиозиды на абсорбирующих эпителиальных клетках, вызывая эндоцитоз ферментативной субъединицы A, после чего он рибозилирует АДФ субъединицу G-белка, который контролирует активность аденилилциклазы.Хотя вирулентность является многофакторной, холерный токсин является ключевым фактором, ответственным за обильную секреторную диарею, которая возникает у инфицированных людей. Трансмиссивные элементы, такие как лизогенный бактериофаг , несущий гены токсина холеры 22 и элемент SXT, несущий гены устойчивости к антибиотикам 23 , будут продолжать определять эволюцию V. cholerae .

Биологические факторы и факторы окружающей среды, которые способствуют динамике вспышек холеры, продолжают оставаться предметом интенсивных исследований.Было опубликовано несколько обзорных статей, посвященных важности факторов окружающей среды в распространении вспышек холеры. 24–26 . В этом обзоре мы сосредоточимся скорее на трех биологических факторах, которые, как считается, играют важную роль в возникновении и формировании вспышек холеры: восприимчивость хозяина, вирулентность V. cholerae и литические бактериофаги. Ниже мы обсудим эту троицу факторов, связанных с динамическим характером вспышек холеры.

Человек-хозяин

Клинический спектр

V.cholerae инфекция

Инфекция V. cholerae вызывает клинический спектр, который варьируется от бессимптомной колонизации до холеры гравис, наиболее тяжелой формы болезни (). После приема организмом зараженной пищи или воды V. cholerae колонизирует тонкий кишечник в течение 12–72 часов до появления симптомов. Холера часто начинается с желудочных спазмов и рвоты, за которыми следует диарея, которая может прогрессировать до потери жидкости до 1 литра в час. 27 .Эти потери приводят к серьезному истощению объема жидкости и метаболическому ацидозу, что может привести к коллапсу кровообращения и смерти 7 . Стул с рисовой водой обычно содержит от 10 10 до 10 12 вибрионов на литр. Пациенты с симптомами могут выделять вибрионы до начала болезни 28,29 и будут продолжать выделять организмы в течение 1-2 недель 30,31 . Бессимптомные пациенты обычно выделяют вибрионы со стулом только в течение 1 дня, примерно 10 3 вибрионов на грамм стула 32 .Следовательно, распределение пациентов с симптомами влияет на количество V. cholerae , которые выделяются для последующей передачи.

Таблица 1

Клинический спектр инфекции Vibrio cholerae

Бессимптомная инфекция Легкая инфекция Тяжелая инфекция

Рвота и обильная диарея
Обезвоживание Нет От легкой до легкой От средней до тяжелой (гиповолемический шок)
Характеристики стула Нормальный водный стул Нормальный жидкий стул
Вибрионов на грамм стула До 10 5 До 10 8 10 7 до 10 9 в стуле (и рвотных массах)
Лечение 900 Нет Раствор для пероральной регидратации (O RS) ПРС, внутривенные жидкости и антибиотики
Смертность Нет Нет Без лечения: до 50% Вылечено: менее 1%
9 из них с симптомами варьируется в зависимости от возраста и эндемичности заболевания.В эндемичных условиях, таких как дельта реки Ганг, дети с большей вероятностью будут госпитализированы с тяжелым заболеванием 33 . За последние 20 лет преобладание тяжелых случаев переместилось на детей младшего возраста, с пиком тяжелых случаев в возрасте 2 лет 34 . Напротив, при эпидемических моделях передачи, например, когда V. cholerae вводят иммунологически неинфицированным населением, все возрастные группы кажутся одинаково восприимчивыми к симптоматической инфекции 16,35–37 .

Бессимптомные случаи также могут способствовать распространению микроорганизма, хотя и на гораздо более низком уровне, чем пациенты с симптомами, и могут отражать важный компонент приобретенного иммунитета, который наблюдается в некоторых сообществах. Однако бессимптомные случаи часто трудно задокументировать. Четырехкратное повышение титра вибриоцидного антитела в сыворотке крови является полезной мерой для выявления бессимптомных людей, которые могут быть инфицированы, но от которых невозможно изолировать организм.Используя положительный результат посева из ректального мазка или ответ на вибриоцидные антитела для определения инфекции, недавно было обнаружено, что у бангладешских детей в возрасте до 5 лет вероятность появления симптомов в 2–3 раза выше, чем у детей старше 5 лет 35 . Частота симптомов во всех возрастных группах в этом исследовании составила 57% 35 . Это соответствует показателям симптоматических инфекций, которые были обнаружены в связи с классическими штаммами в более ранней литературе 32,38–40 , но намного выше показателей, зарегистрированных для инфекций Эль-Тор в 1970-е годы 40 .Таким образом, бессимптомные случаи могут составлять примерно половину всех случаев. Будущие исследования иммунологии бессимптомных пациентов помогут оценить их вклад в защитный иммунитет на популяционном уровне.

Восприимчивость к холере

Генетические факторы хозяина и факторы питания влияют на восприимчивость к холере. Антигены группы гистокрови ABH представляют собой набор клеточных и секретируемых гликолипидов и гликопротеинов, которые являются ключевыми детерминантами восприимчивости хозяина к ряду желудочно-кишечных патогенов; они, по-видимому, влияют на специфичность рецептора клетки-хозяина в отношении связывания патогенов и токсинов.Фенотип O соответствует немодифицированному антигену H и связан со сниженным риском заражения V. cholerae . Однако, как только хозяин инфицирован, фенотип О ассоциируется с повышенным риском серьезных симптомов; механизм этого остается неизвестным. Распространенность фенотипа О варьируется среди человеческих популяций; его низкая распространенность в дельте реки Ганг предполагает, что существует отбор против этого фенотипа в эндемичной по холере зоне 35,41,42 .В популяциях с высокой распространенностью группы крови O, например, в странах Латинской Америки, болезнь протекает тяжелее, и потребности в регидратации и госпитализации инфицированных людей существенно выше 43,44 .

Хотя антиген группы крови H является единственным давно признанным генетическим фактором, связанным с восприимчивостью к холере, другие генетические полиморфизмы, вероятно, были выбраны за или против, учитывая исторически высокие показатели смертности от холеры.Например, недавнее исследование связывало тяжелую холеру с вариантом LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) 45 , консервативного белка врожденного иммунитета. Экспрессия LPLUNC1 повышается в эпителии тонкой кишки во время острой холеры и может влиять на течение инфекции V. cholerae 46 .

Недоедание, измеряемое по задержке линейного роста, не является фактором риска заражения V. cholerae 35 .Однако дефицит ретинола (витамина А), питательного микроэлемента, который способствует иммунитету слизистых оболочек, является фактором риска, связанным как с инфекцией V. cholerae , так и с развитием симптоматического заболевания 35 . Цинк, еще один питательный микроэлемент, который способствует иммунитету слизистых оболочек, может истощаться во время диарейного заболевания. 47 . Оральный цинк устраняет этот дефицит у детей, что приводит к значительному сокращению объема стула и времени до прекращения диареи 44 .

Защитный иммунитет

Несколько исследований демонстрируют, что клинически очевидная инфекция V. cholerae индуцирует защитный иммунитет против последующей инфекции (ВСТАВКА 1). Заражение североамериканских добровольцев классическим биотипом и биотипом Эль-Тор обеспечивало 100% и 90% защиту соответственно от последующего заражения 31,48 . Аналогичным образом, в эндемических условиях было обнаружено, что более 90% пациентов с тяжелым заболеванием, вызванным инфекцией классическим биотипом, были защищены от инфекции в будущем, на основании наблюдаемых и ожидаемых показателей госпитализации в связи со вторым эпизодом холеры в США. это население 33 ; аналогичные результаты были получены в отдельном исследовании 49 .Механизм этого защитного иммунитета против инфекции и болезни V. cholerae неизвестен.

Ящик 1 | Иммунный ответ человека на

Vibrio cholerae

Врожденный ответ

Холера считается прототипом невоспалительной инфекции. Часто отсутствуют грубые изменения слизистой оболочки кишечника или архитектурной целостности тонкой кишки. Однако наблюдается повышенная регуляция провоспалительных цитокинов (включая интерлейкин-1β и фактор некроза опухоли), экспрессии различных бактерицидных белков и миграции нейтрофилов в собственную пластинку во время острой холеры.Естественная вариабельность врожденного иммунного ответа может влиять на восприимчивость, что подтверждается открытием, что полиморфизм в промоторной области гена LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) связан с повышенным риском холеры.

Адаптивный ответ

Как адаптивный иммунный ответ на холеру обеспечивает защиту от последующего заболевания, неизвестно. Поскольку Vibrio cholerae неинвазивен, было высказано предположение, что секреторный иммуноглобулин А кишечника (sIgA) защищает от колонизации слизистой оболочки.Примерно через 8 дней после начала холеры наблюдается пик циркуляции антиген-специфических лимфоцитов V. cholerae , которые экспрессируют хемокиновые рецепторы кишечника (см. Рисунок) 112 . Эти лимфоциты вскоре становятся необнаруживаемыми в крови, поскольку они возвращаются на слизистую оболочку кишечника, где они приводят к увеличению секреции sIgA в кишечнике. Реакции сывороточных антител, такие как реакция вибриоцидных антител, также достигают максимума через 1-3 недели после заражения. Хотя высокие сывороточные титры вибриоцидных антител и IgA, специфичного к холерному токсину, коррелируют с защитой от инфекции, эти антитела снижаются до исходного уровня через год после заражения, задолго до того, как защитный иммунитет к холере ослабевает.Точно так же у добровольцев, инфицированных V. cholerae , уровни sIgA слизистой оболочки снижаются до исходного уровня в течение нескольких месяцев. Однако, когда добровольцев, у которых больше нет определяемых антител, повторно провоцируют антигенов V. cholerae , они демонстрируют стойкую способность вызывать анамнестический иммунный ответ, развивая пиковую кишечную секрецию антител так же быстро, как в течение трех дней. Следовательно, возможно, что скорость анамнестического ответа на повторное воздействие, а не заранее сформированные антитела, может опосредовать защиту от холеры.Это подтверждается недавними данными о том, что холера вызывает ответ В-клеток памяти, который выявляется в течение по крайней мере 1 года после заражения холерой 113 .

Выявлено несколько коррелятов иммунитета. Лучше всего охарактеризованным серологическим маркером иммунитета является титр сывороточных вибриоцидных антител. Это антитело является комплемент-зависимым бактерицидным антителом, титр которого заметно увеличивается после заболевания, но снижается до исходного уровня через 6–9 месяцев 7 . В Бангладеш вибриоцидные антитела обнаруживаются у большинства людей в возрасте 10–15 лет и связаны со снижением риска инфицирования.Поскольку V. cholerae является неинвазивным патогеном, эти сывороточные антитела могут не вносить непосредственный вклад в защиту на уровне слизистой оболочки кишечника, но они могут быть полезны для оценки степени защитного иммунитета на уровне популяции. Антитела иммуноглобулина A, специфичные к TCP, LPS или субъединице B холерного токсина, коррелируют с защитой от последующей инфекции и болезни 35 .

Полевые испытания вакцины обеспечивают контролируемую оценку устойчивости адаптивных иммунных ответов к В.холера . В крупнейшем контролируемом исследовании 62 285 участников в Бангладеш были рандомизированы для получения 3 пероральных доз (с интервалом в 6 недель) комбинации убитых целых клеток (Эль Тор и классические) плюс субъединица B холерного токсина (вакцина B – WC), цельноклеточный компонент без B-субъединицы (вакцина WC) или убитый Escherichia coli K12 в качестве контроля. Через 3 года наблюдения две вакцины (B – WC и WC) имели 50% и 52% защитную эффективность, соответственно 50 . Для детей младше 5 лет эффективность составила 23–26%.Через 6 месяцев наблюдения вакцина B – WC дала 85% защиту. 51 . Ведутся споры о том, демонстрируют ли эти данные эффективность, достаточную для широкомасштабного распространения. В настоящее время предпринимаются усилия по созданию новых вакцин для обеспечения более высоких и устойчивых ответов у реципиентов, а также для снижения производственных затрат с целью преодоления как иммунологических, так и производственных препятствий, которые ограничивают применимость существующих вакцин против холеры. 52–55 .

Роль, которую коллективный иммунитет играет в замедлении передачи холеры, недавно стала оценена.При испытаниях эффективности вакцины отдельные пациенты рандомизируются, чтобы гарантировать, что защитная эффективность отражает только прямой эффект вакцины 56 . Это означает, что при лицензировании вакцин не учитываются их преимущества на уровне населения. Обсуждаемое выше испытание вакцины B – WC имело уровень охвата от 4% до 65% в разных регионах 50,57 . Когда уровни заболеваемости холерой сравнивались с показателями охвата вакцинацией в конкретных регионах, было обнаружено, что заболеваемость среди реципиентов плацебо обратно коррелировала с уровнем охвата прививками 57 : там, где охват был высоким, даже среди тех, кто этого не сделал. Получившие вакцину, вероятность заболеть холерой по-прежнему на четверть ниже, чем у невакцинированных лиц в районах с низким охватом.Когда коллективный иммунитет включен в имитационные модели эффективности вакцины, охват вакцинацией B – WC 50% в эндемичных районах приводит к снижению общего числа случаев на 93%. 58 . Взятые вместе, эти исследования доказывают, что вакцина B-WC может обеспечить достаточную защиту для широкомасштабной вакцинации в эндемичных регионах и что коллективный иммунитет, вероятно, будет играть важную роль в ограничении передачи холеры.

Передача с точки зрения хозяина

Несколько групп создали математические модели, использующие перспективы как хозяина, так и патогена, чтобы помочь объяснить и предсказать природу вспышек холеры.Цель большинства этих моделей — точно отразить резкий рост и снижение заболеваемости холерой, которое наблюдается два раза в год в регионах вокруг Бенгальского залива. Модель была построена для включения показателей передачи, фактора сезонных колебаний и расчета количества восприимчивых людей на основе различного защитного иммунитета от прошлой инфекции. 59–61 . Эти идеи были основаны на проверке гипотез о том, что высокое соотношение бессимптомных и симптоматических случаев связано с разрешением вспышки и что короткий интервал защитного иммунитета (2–12 недель) после заражения допускает последующие вспышки, которые наблюдаются в Бангладеш 62 .Результаты показывают, что сочетание многих бессимптомных случаев и недолговечного иммунитета, а не молчаливых шеддеров , дает модель, которая лучше всего отражает эпидемиологические данные из Западной Бенгалии. У модели есть ограничения: она предполагает соотношение бессимптомных и симптоматических случаев, которое намного выше, чем наблюдаемое в последние годы, и она была протестирована с использованием показателей смертности, которые связаны с клинически определенной холерой из Западной Бенгалии между 1891 и 1940 годами — эпохой до открытия. ротавирусной и энтеротоксигенной E.coli , которые являются смешивающими факторами. Несмотря на свои недостатки, эти модели улучшают наше понимание сложной динамики вспышек и показывают, насколько мощной может быть реакция хозяина в ограничении передачи. Новые модели передачи холеры должны по-прежнему включать факторы сезонных колебаний, соотношение бессимптомных и симптоматических случаев и темпы снижения защитного иммунитета.

Возбудитель

Инфекционные дозы в моделях на животных

Инфекция человека-хозяина представляет собой многоступенчатый процесс: V.cholerae необходимо принимать внутрь в дозе, достаточной для преодоления врожденной иммунной защиты, затем экспрессии факторов вирулентности для колонизации тонкой кишки и, наконец, для координации выхода из организма хозяина для облегчения передачи 63 (). Модели холеры на животных в значительной степени являются показателями успешности первых двух стадий 64 . Используя модель инфекции у новорожденных мышей, было показано, что V. cholerae , которые выделяются с рисовым водяным стулом человека, находятся в гиперинфекционном состоянии, демонстрируя ID 50 из 10–100 клеток по сравнению с примерно 500 клетками для В.cholerae , выращенный in vitro 65–67 . Гиперинфекция также была задокументирована у Citrobacter rodentium 68 , а гиперинфекционный V. cholerae может быть воспроизведен при прохождении через мышиную модель инфекции 68,69 . Определение и фенотип гиперинфективности противоречивы из-за сложностей при выборе наиболее подходящих условий культивирования для роста контрольного штамма.

Жизненный цикл патогенного Vibrio cholerae

Токсигенные штаммы Vibrio cholerae сохраняются в водной среде вместе с нетоксигенными штаммами, чему способствует образование биопленок на биологических поверхностях и использование хитина в качестве источника углерода и азота.При попадании этих адаптированных к водной среде бактерий в загрязненную пищу или воду токсигенные штаммы колонизируют тонкий кишечник, размножаются, выделяют токсин холеры и возвращаются в окружающую среду хозяином при секреторной диарее. Патогенные микроорганизмы, выделяемые калом, находятся в преходящем гиперинфекционном состоянии, которое способствует усилению вспышки за счет передачи последующим хозяевам.

Молекулярные механизмы, которые способствуют гиперинфективности у V. cholerae , многофакторны.Исследования на микроматрицах показали, что глобальный профиль транскрипции гиперинфекционных V. cholerae из рисового водяного стула отличается от такового у V. cholerae , выращенных in vitro или верхних отделов тонкой кишки V. cholerae , выведенных в рвотных массах 65, 70,71 (). Большинство известных генов вирулентности, включая гены холерного токсина и TCP, подавляются в стуле из рисовой воды, но механизм этого подавления остается неизвестным. Еще одна уникальная особенность — подавление генов хемотаксиса, что удивительно, учитывая, что планктонные вибрионы, выделяемые пациентами, являются жгутиками и очень подвижны.Было показано, что это подавление хемотаксиса является одним из компонентов гиперинфективности, потому что подвижные, но не хемотаксирующие мутанты V. cholerae являются гиперинфекционными 66,72,73 .

Паттерны экспрессии гена Vibrio cholerae на разных стадиях жизненного цикла

При проглатывании (нижняя правая панель) Vibrio cholerae использует подвижность и муциназы для проникновения через слизистый гель и N -ацетилглюкозамин-связывающий белок A ( GbpA) и другие факторы колонизации эпителия тонкой кишки.Существенные изменения в экспрессии генов сопровождают этот переход от пруда к острой инфекции, включая, помимо прочего, индукцию vieA, которая кодирует фосфодиэстеразу, гидролизующую вторичный мессенджер циклический ди-GMP, и гены, регулируемые ToxR, включая гены холерного токсина и самоагрегирующиеся пилусы, регулируемые токсинами (TCP). Кроме того, репрессируются несколько генов, например, гены хитин-связывающего маннозу-чувствительного гемагглютинина пилуса (MSHA) и стрессового сигма-фактора RpoS.На поздней стадии инфекции (нижняя левая панель) V. cholerae снова изменяет экспрессию своего гена, чтобы отделиться от эпителия — «реакция бегства» — и подготовиться к передаче другому хозяину (например, распространение в домашних условиях). ) или попадание в водную среду. Изменения на поздних стадиях включают индукцию генов синтеза c-di-GMP (дигуанилилциклазы), систем поглощения питательных веществ (таких как регулон регуляции поглощения железа (Fur)) и подвижности (Fla), а также репрессию таких генов, как для хемотаксиса (Che) и регулона ToxR.Возникающее в результате состояние «подвижное, но не хемотаксическое» способствует гиперинфективности. Если бактерии, выделяющиеся со стулом, не попадают в организм другого хозяина в течение короткого периода времени, то их ждет одна из двух судьб (верхняя панель): укоренение в водной среде путем нахождения подходящих источников питательных веществ, таких как хитин, или распад в « активную среду ». но некультивируемое состояние. При воздействии хитина V. cholerae индуцирует несколько генов, участвующих в присоединении и катаболизме хитина (регулон ChiS), а также гены, участвующие в генетической компетентности (регулон TfoX).Образование биопленок на поверхности опосредуется индукцией регулона Vps, который кодирует внеклеточный полисахарид. Во время перехода в активное, но не культивируемое состояние, происходят большие изменения в экспрессии генов, поскольку V. cholerae пытается адаптироваться к условиям с низким содержанием питательных веществ. К ним относятся индукция генов фосфатного и азотного голодания (phoB и glnB-1 соответственно) и репрессия генов трансляционного аппарата.

Транскриптом V. cholerae , пассированный от животных, также уникален и был выявлен в двух недавних исследованиях.Во-первых, существует скоординированная «реакция бегства», которая позволяет организму отделяться от ворсинок кишечника, готовясь к выходу из организма хозяина; это регулируется стрессом и стационарной фазой сигма-фактора РНК-полимеразы RpoS 74 . Во-вторых, на более поздних стадиях заражения животных, V. cholerae активирует экспрессию генов, которые не требуются для инфекции, но важны для выживания при переходе в водную среду 75 . Эта предварительная индукция генов выживания в окружающей среде на поздних этапах инфекции может подготовить организм к жесткому селективному давлению в воде пруда, облегчая передачу 24,65 .В большинстве описанных выше исследований бактериальные клетки, составлявшие инфекционную дозу, были планктонными клетками, а не агрегатами. Было проведено одно исследование с участием добровольцев, в котором добровольцам вводили V. cholerae в морщинистой форме (то есть агрегатной и продуцирующей экзополисахариды); Инфекционная доза была аналогична дозе, наблюдаемой для планктонных форм, а морщинистые формы выделялись добровольцами 76 . Кроме того, люди выделяют V. cholerae в виде сложных биопленко-подобных агрегатов 67,77,78 .Идентификатор ID 50 V. cholerae выделяется в совокупности, и роль, которую эти совокупности играют в передаче, еще предстоит определить.

Инфекционная доза у людей

Инфекционная доза V. cholerae у людей сильно варьируется в зависимости от бактериального штамма и хозяина. Дозы 10 8 –10 11 клеток требовались для обеспечения последовательной колонизации у здоровых добровольцев из Северной Америки 7,29,31 . Инфекционная доза снижается до 10 4 –10 8 при использовании бикарбонатного буфера для нейтрализации желудочной кислоты незадолго до инокуляции; этот метод дает 90% заражений 7,29,31 .В домашнем хозяйстве пища может действовать как кислотный буфер; В исследованиях на добровольцах введение бактерии как часть «еды» из риса, рыбы, заварного крема и обезжиренного молока дало результаты, сравнимые с результатами, наблюдаемыми при одновременном введении бактерий и бикарбоната 79 . В эндемичных условиях инфекционная доза неизвестна. Подсчет V. cholerae в образцах домашнего хозяйства и окружающей среды исторически сложен, требует быстрого реагирования и использования флуоресцентной микроскопии для подсчета тех бактерий, культивирование которых может оказаться затруднительным. 80 .

Клиническое наблюдение, что буферная кислота желудочного сока снижает инфекционную дозу, предполагает, что бактериальные гены, участвующие в кислотной устойчивости, могут способствовать вирулентности. Сигнатурный мутагенез (STM) был использован для поиска подмножества генов вирулентности, которые вносят вклад в кислотостойкость in vitro 81 . Удаление этих генов ослабило V. cholerae в модели инфекции у новорожденных мышей, что подтверждает их роль в вирулентности. Кроме того, обнажая В. дикого типа.cholerae к кислоте непосредственно перед инокуляцией мышей давало большое конкурентное преимущество перед неадаптированными к кислоте бактериями 82 . Эти данные, наряду с другими, демонстрируют, что бактерии, выращенные in vitro , могут стать более заразными в результате воздействия стресса. Кроме того, эти результаты могут иметь клиническое значение в тех регионах мира, где распространено пониженное производство кислоты в желудке (ахлоргидрия), вторичное по отношению к инфекции Helicobacter pylori, например, Бангладеш 7 .

Передача с точки зрения патогена

Роль, которую гиперинфекция играет в быстром распространении холеры среди населения в начале вспышки, остается непроверенной. V. cholerae остается гиперинфекционным в течение как минимум 5 часов после попадания от пациентов в водную среду, что позволяет предположить, что гиперинфекция играет особую роль в передаче инфекции в районах с высокой плотностью населения, где существует вероятность контакта с организмом другого человека. в относительно короткие сроки 65,70 .Одна модель передачи холеры предполагает, что вспышка начинается, когда либо уже инфицированный индексный случай мигрирует и загрязняет новую территорию, либо V. cholerae , потребляемая из естественного водоема окружающей среды, создает новый индексный случай у постоянного населения. В обоих сценариях не исключено, что ускорение вспышки является результатом быстрого распространения гиперинфекционного вируса V. cholerae от человека к человеку при кратковременном нахождении в окружающей среде.Модели передачи, которые допускают только случайное попадание V. cholerae в окружающую среду, не предсказывают резкого роста числа случаев, которые наблюдаются в начале вспышек по всему миру, включая те, которые происходят раз в два года в Бангладеш 11 . Однако модели, которые включают гиперинфекцию 83 , лучше отражают этот резкий подъем.

Поддержание передачи через водоемы

Эндемичная холера встречается в регионах с естественными водными резервуарами токсигенных и нетоксигенных V.cholerae , где бактерии могут сохраняться либо в свободноживущем состоянии, либо в ассоциации с фитопланктоном 84–86 , зоопланктоном 85–88 или биотическим и абиотическим детритом 89,90 . Эти взаимодействия могут быть как полезными, так и антагонистическими. 91,92 . Ассоциации вообще не случайны. Например, V. cholerae развил механизмы для присоединения, разложения и использования хитина в качестве источника углерода и азота 93–95 ().Для экологических изолятов методы ДНК-типирования, основанные на секвенировании гипервариабельных локусов повторов короткой последовательности, начали лучше определять взаимосвязь между нетоксигенными и токсигенными V. cholerae . Было обнаружено, что два сельских региона, разделенных 80 км в дельте реки Ганг, содержат отдельные, разнообразные штаммы из экологических и клинических условий 96 . Изоляты из окружающей среды состояли как из токсигенных, так и из нетоксигенных штаммов O1 El Tor и O139 на фоне нетоксигенных штаммов, представляющих многие серогруппы.Напротив, клинические изоляты были строго токсигенными O1 El Tor и O139, но относились к разным типам штаммов. Эти результаты демонстрируют, что в организме хозяина токсигенные штаммы обладают селективным преимуществом перед нетоксигенными штаммами из окружающей среды. Взаимосвязь между экологическими и клиническими штаммами может быть разной в других регионах мира и, вероятно, будет варьироваться в зависимости от окружающей среды, санитарии, инфраструктуры и плотности населения.

Селективное давление в водной среде

Некоторые бактериальные патогены, в том числе V.cholerae , теряют способность культивироваться на стандартных средах после переноса от хозяина или лаборатории в водную среду 24,97 . Этот фенотип традиционно известен как «жизнеспособное, но не культивируемое» (VBNC) состояние, поскольку клетки сохраняют способность к основным метаболическим процессам, таким как синтез белка, дыхание и поддержание целостности мембран, несмотря на их неспособность культивироваться 24 . Альтернативный, более консервативный термин, который применяется к этому состоянию, — «активный, но не культивируемый» (ABNC), поскольку остается неясным, живы ли еще бактерии, утратившие культивирование на стандартных средах 98 .

V. cholerae может быстро превратиться в ABNC, когда покидает человека-хозяина и попадает в водную среду. Исследования с участием V. cholerae , полученных от пациента и in vitro , которые подвергались диализу в прудовой воде, продемонстрировали снижение культивирования на 60% и 90% через 5 часов и 24 часа, соответственно, 65 . Анализ микроматрицы продемонстрировал быстрые и поразительные изменения транскрипции, когда бактерии входили в состояние ABNC 65 . Эти изменения включали индукцию генов поглощения фосфатов и фиксированного азота и подавление генов синтеза белка и энергетического метаболизма, что согласуется с низкими уровнями источников углерода, фосфатов и фиксированного азота, которые часто встречаются в водной среде.Остается проверить, будет ли включение твердых частиц, которые были отфильтрованы из воды пруда в вышеупомянутом исследовании, продлить культивирование V. cholerae . Учитывая возможность такого быстрого снижения культивируемости, исследователи задали вопрос, является ли большинство из клеток V. cholerae , заражающих людей из окружающей среды, ABNC или культивируемыми клетками. Одна из гипотез гласит, что если культивируемые клетки более заразны, чем клетки ABNC, то ID 50 , рассчитанный по общему количеству клеток, будет увеличиваться по мере уменьшения процента культивируемых клеток в популяции.Это было подтверждено в недавних экспериментах, предполагающих, что основными виновниками инфицирования человека, вероятно, являются культивируемые клеток V. cholerae 65 . В будущих математических моделях передачи V. cholerae должна быть учтена возможность уменьшения скорости культивирования.

V. cholerae литический бактериофаг

Биология вибриофагов

Восемьдесят лет назад было высказано предположение, что бактериофаги могут контролировать естественные популяции патогенов 99,100 .Более поздние исследования в области морской микробиологии выявили элегантный баланс между бактериофагами и их цианобактериальной добычей 101 . С клинической точки зрения бактериофаги в принципе могут использоваться для профилактики или лечения инфекций. Действительно, документально подтверждена «фаговая терапия» против холеры и других заболеваний (ВСТАВКА 2). Существует не менее 200 видов бактериофагов, которые инфицируют V. cholerae , известных как вибриофаги 102,103 . Нитевидный лизогенный вибриофаг CTXΦ является одним из наиболее охарактеризованных, поскольку он несет гены, кодирующие токсин холеры 22 .Первым секвенированным геномом хвостатого вибриофага был геном κ139; этот вибриофаг может быть как лизогенным, так и литическим. Основным механизмом, с помощью которого V. cholerae O1 становится устойчивым к κ139 и многим другим вибриофагам, является мутация кластера генов rfb , который кодирует ферменты для синтеза LPS 104 . В отсутствие рецептора антигена LPS O вибриофаг не может связываться или инфицировать бактериальную клетку. Все rfb -нулевые мутанты V. cholerae O1, которые были протестированы на сегодняшний день, аттенуированы 65,67,105 .

Ящик 2 | Исследование бактериофагов

В 1915–1917 годах Twort 114 и d’Hérelle 115 независимо друг от друга открыли бактериофаги. Д’Эрелль определил, что бактериальная инфекция на животных моделях может быть ослаблена бактериофагами, и в 1925 году состояние пациентов с бубонной чумой улучшилось после того, как д’Эрелль ввел бактериофаги непосредственно в их бубоны (увеличенные лимфатические узлы). 116 . Эти открытия привели к исследованию бактериофагов, в задачу которого входило изучение терапии бактериофагами холеры в Индии 116 .В их первом испытании терапии сравнивали 244 нелеченных пациента с холерой и 219 пациентов с холерой, которых лечили вибриофагами; в нелеченой группе смертность составила 20%, тогда как в обработанной группе — 6,8% (χ 2 , p <0,01). Другие исследования показали аналогичные результаты 5,116,117 . Несмотря на некоторые ограничения, характерные для той эпохи, расследование добилось достаточного успеха, чтобы расширить свои усилия. 5 .

За 1928, 1929 и 1934 годы, всего 36 000, 130 823 и 871 316 доз вибриофагов были подготовлены и распространены сотрудниками по расследованию в то время, когда начались вспышки в конкретных исследуемых сообществах в Индии 116 .Вибриофаги также распространялись в общественных источниках питьевой воды для профилактики. Смертность от холеры сравнивалась с контрольными сообществами до и после вмешательств. Трехлетний уровень смертности от холеры снизился с 30 до 2 на 10 000 в регионах, которые лечились вибриофагами 117 . Хотя эти исследования имели несколько ограничений, они предоставляют единственные доступные данные об эффективности терапии вибриофагами. Достижения в области регидратации и антибиотикотерапии в 1930-х и 1940-х годах сделали испытания бактериофагов, основанные на конечных точках смертности, неэтичными и статистически сложными 116,118 .

Вибриофаги в окружающей среде

В 1930-х годах было обнаружено, что случаи холеры положительно коррелировали с изоляцией вибриофагов в водной среде 106 . В наше время была описана отсроченная положительная согласованность между ростом числа случаев холеры и последующим ростом вибриофагов в окружающей среде. 107 . Модель, разработанная Jensen et al. предсказывает, что если вспышка будет инициирована увеличением В.cholerae в окружающей среде, плотность вибриофагов впоследствии будет увеличиваться, что в конечном итоге будет способствовать сокращению вспышки 108 . В Международном центре исследований диарейных заболеваний в Бангладеш (ICDDRB) рост случаев холеры был связан с согласованным, но отсроченным увеличением доли больных холерой с вибриофагами в стуле 109 . Вибриофаги, идентифицированные в этом исследовании, были литическими вибриофагами (JSF4), хотя у пациентов можно выделить несколько типов вибриофагов 107 .Титры вибриофагов в стуле из рисовой воды варьировались от 10 2 до 10 8 бляшкообразующих единиц на миллилитр, что согласуется с другими публикациями 65,67 . Несмотря на присутствие литических вибриофагов, все стула были положительными на V. cholerae и V. cholerae , как правило, по количеству вибриофагов, по крайней мере, на порядок. Последующие исследования показали, что большинство бактериальных изолятов из стула все еще чувствительны к вибриофагам 65,67 .Пока неясно, почему вибриофаги в кишечнике человека не могут избавиться от инфекции V. cholerae , но эта «неудача» может играть важную роль в распространении клональной экспансии фагов во время вспышек. 109 .

Передача с точки зрения вибриофага

Современные эксперименты начали проверять гипотезу о том, что фаги могут ослаблять бактериальную передачу. Например, тесты подвижности с использованием микроскопии в темном поле были использованы для быстрого скрининга стула из рисовой воды на наличие вибриофагов; стул, который был отрицательным в темном поле (не содержал подвижных вибрионов), с большей вероятностью содержал литические вибриофаги и имел низкое количество культивируемых клеток, но схожее общее количество клеток 77 .С помощью этого косвенного измерения для фагов было обнаружено, что по крайней мере половина пациентов с холерой, которые наблюдались в течение 5-летнего периода в ICDDRB, содержали вибриофаги, а домашние контакты пациентов с положительным индексом вибриофагов имели меньшую вероятность инфицирования. с V. cholerae , чем люди, которые контактировали с пациентом, который не был фагоположительным 77 . Эти результаты согласуются с выводом о десятикратном снижении инфекционной дозы В.cholerae , когда в стуле хозяина есть вибриофаги 67 .

V. cholerae обычно превосходит литические бактериофаги сразу после пассажа от хозяина 65 , 67 . В лабораторных экспериментах с использованием стула из рисовой воды, выращенного человеком, бактериофаги имеют начальный всплеск репликации в течение первых нескольких часов в водной среде и могут достигать отношения бактериофагов к бактериям примерно 1: 1 за 24 часа 65,67 .Хотя гиперинфекция может сохраняться в течение нескольких часов после пассажа от хозяина 65,70 , потеря культивирования (обсуждалось выше) и расцвет бактериофагов в водной среде, вероятно, объединяются, чтобы блокировать передачу 65 . Контрольные эксперименты с , полученным in vitro , V. cholerae и бактериофагами подтверждают, что бактериофаги могут ограничивать бремя инфекции 65,67 . Однако бактериофаги никогда не могут полностью блокировать инфекцию, поскольку мутанты V.cholerae , у которых отсутствует зрелый LPS, избегают хищничества и колонизируют мышей, хотя и в меньшем количестве. Как уже упоминалось, мутанты LPS ослаблены и могут быть потеряны в естественном жизненном цикле V. cholerae 65,67,105 .

Таким образом, динамическое взаимодействие между бактериофагом и бактерией в воде пруда предполагает, что модель передачи холеры должна включать в себя меру быстрого снижения способности бактерий к культивированию и уничтожения бактериофагами. В закрытой экспериментальной системе передача В.cholerae можно свести к минимуму, если эти два фактора сочетаются в водной среде. Следовательно, вероятно, будет преимущество пригодности для V. cholerae , которое быстро передается следующему хозяину, когда культивируемость все еще высока, а концентрация бактериофагов все еще низкая. В этом обзоре упоминалось несколько моделей, которые предлагают разные объяснения роста и спада вспышек с точки зрения хозяина (клинический спектр и коллективный иммунитет), бактерии (гиперинфекция) и бактериофага (хищничество).Мы объединили несколько опубликованных моделей в одну рабочую диаграмму, чтобы побудить задуматься о том, как эти факторы могут взаимодействовать в естественной среде (). Лучшее понимание того, как функционирует интегрированная модель, может раскрыть возможности для вмешательств в области общественного здравоохранения.

Комбинированная модель передачи холеры с точки зрения хозяина и микроорганизмов

Общая популяция (H) питает пул восприимчивых хозяев (S), которые становятся инфекционными (I) после употребления Vibrio cholerae из окружающей среды. источник, с литическими бактериофагами или без них (Φ).Инфицированные люди имеют симптомы (I symp ) или бессимптомны (I asymp ) и выздоравливают (R) благодаря действиям своей иммунной системы и, возможно, литических бактериофагов, или погибают от инфекции (m). Выздоровевшие люди будут повторно попадать в пул восприимчивых с разной скоростью (//) в зависимости от степени защитного иммунитета. Литические фаги и гиперинфекционные V. cholerae (VC Hi ) выделяются симптоматическим хозяином в различных концентрациях; бессимптомные хозяева выделяют гораздо меньше бактерий (пунктирная линия).Клетки VC Hi быстро переходят к следующему хозяину, сохраняются в окружающей среде в виде культивируемых клеток с неизвестной инфекционностью (VC C ) или распадаются в «активное, но не культивируемое» состояние (VC ABNC ) с пониженной инфекционностью. Все три типа клеток плюс совокупные бактерии (не показаны), вероятно, играют смешанную роль в качестве резервуаров окружающей среды для будущих вспышек.

Заключительные замечания

Модель передачи, которая точно предсказывает масштабы возникающей вспышки, предоставит органам общественного здравоохранения полезную информацию для соответствующего масштабирования их ответных мер.Вмешательства, нацеленные на жизненно важные этапы передачи, могут быть эффективными для предотвращения вспышек. Иммунитет хозяина, гиперинфекция патогенов и фаги — все это факторы, которые можно использовать для борьбы со вспышкой. Например, централизованные центры управления отходами часто терпят неудачу в условиях нехватки ресурсов. Поскольку пациенты с симптомами выделяют более V. cholerae , а V. cholerae в стуле из рисовой воды является гиперинфекционным, вспышки холеры лучше всего остановить у источника, уменьшив воздействие на человека свежевыпущенного гиперинфекционного стула.Другими словами, при сохранении централизованного управления следует поощрять и проверять децентрализованные усилия по целевому управлению отходами в единице домашнего хозяйства. Эта концепция подчеркивает решающую важность уже проверенных, но простых мероприятий в домашних условиях, таких как использование кувшинов с узким горлышком, хлорирование хранящейся воды и мытье рук, для профилактики заболеваний. 110,111 .

Еще многое предстоит узнать об эффективности вакцины в естественных условиях холеры.Отказ от традиционных мер оценки эффективности вакцин путем включения преимуществ коллективного иммунитета продолжит раскрывать истинное влияние как существующих вакцин, так и вакцин, находящихся в разработке. Кроме того, понимание воздействия хищничества бактериофагов и того, как вакцины снижают пул восприимчивости до такой степени, что передача не может продолжаться, являются важными областями для будущих исследований. Ответы на многие вопросы, поставленные в этом обзоре, имеют решающее значение для стран с ограниченными ресурсами, таких как Зимбабве, для оптимизации использования ограниченных запасов вакцины и борьбы с пагубными последствиями неудовлетворительной санитарии.

динамика хозяина, патогена и бактериофага

Abstract

Зимбабве представляет собой самый последний пример трагедии, которая постигает страну и ее народ, когда поражает холера. Вспышка 2008–2009 гг. Быстро распространилась по каждой провинции и привела к уровню смертности, аналогичному тем, которые наблюдались в результате инфекций холеры сто лет назад. В этом обзоре мы выделяем достижения, которые помогут понять, как взаимодействия между хозяином, бактериальным патогеном и литическим бактериофагом могут способствовать возникновению и подавлению вспышек холеры в эндемичных условиях и в развивающихся эпидемических регионах, таких как Зимбабве.

Диарейные болезни, включая холеру, являются ведущей причиной заболеваемости и второй по частоте причиной смерти среди детей в возрасте до 5 лет во всем мире 1,2 . Трудно определить точную заболеваемость и смертность от холеры, поскольку системы эпиднадзора во многих развивающихся странах находятся в зачаточном состоянии, и многие страны не решаются сообщать о случаях холеры в ВОЗ из-за потенциального негативного экономического воздействия этой болезни на торговлю и туризм. Сегодня реальное бремя холеры оценивается в несколько миллионов случаев в год, преимущественно в Азии и Африке. 3 .При оптимальной доставке пероральная регидратационная терапия может снизить уровень летальности с> 20%, наблюдавшихся ранее ( 4–6 ), до <1% 7 . Еще предстоит проделать большую работу, поскольку 27 стран сообщили о показателях летальности, превышающих пороговое значение в 1% в 2007 году (REF. 8).

Возбудитель холеры, грамотрицательная бактерия Vibrio cholerae, является факультативным патогеном, жизненный цикл которого имеет как человеческую, так и экологическую стадию 9,10 . V. cholerae дифференцируется серологически на основе антигена O его липополисахарида (ЛПС) (). Штаммы, продуцирующие токсин холеры ( токсигенных ), серогрупп O1 и O139 вызывают подавляющее большинство заболеваний. Серогруппа O1 подразделяется на два фенотипически различных биотипов , Эль-Тор и классический, второй из которых связан с более ранними пандемиями. Оба биотипа могут быть далее подразделены на два серотипа, Инаба и Огава 7 . За последние 20 лет Эль Тор заменил классический биотип 11 ; однако наследие классического биотипа сохраняется, поскольку появились штаммы Эль-Тор, содержащие токсин классической холеры. 12–14 .Серогруппа O139 впервые появилась в 1992 г. в результате мультигенной замены в кодирующей O антиген-кодирующей области штамма-предшественника O1 El Tor 15 . Хотя серогруппа O139 вызвала разрушительные вспышки в 1990-х годах, штамм Эль Тор остается доминирующим штаммом во всем мире 11,16,17 .

Филогенетическое родство штаммов Vibrio cholerae

На основании антигенности компонента О-антигена липополисахарида внешней мембраны в водной среде существует более 200 серогрупп (O1 – O200) Vibrio cholerae .Только подмножество штаммов серогрупп O1 и O139 являются токсигенными (Tox + ) и, следовательно, способны вызывать холеру при приеме внутрь; такие штаммы отбираются у хозяина. Другие штаммы нетоксигены (Tox ) и отбираются против них. Различные типы О-антигена обозначены цветом внешней мембраны и покрытого оболочкой жгутика (периплазматическое пространство и внутренняя мембрана не показаны). Капсулы присутствуют в подмножестве штаммов. Генотипы разных штаммов обозначены цветом цитоплазмы; обратите внимание, что Tox + O1 и O139 имеют по существу один и тот же генотип, за исключением генов O-антигена.

Патофизиология холеры описана в обширной литературе. Короче говоря, патогенные штаммы несут в себе ключевые факторы вирулентности, которые включают холерный токсин 18 и ко-регулируемый токсин (TCP) 19,20 , самосвязывающийся пилус, который связывает бактериальные клетки вместе 21 , возможно, чтобы противостоять силам сдвига. в тонком кишечнике хозяина. Токсин холеры представляет собой секретируемый токсин субъединицы AB 5 . Пентамер субъединицы B связывает моносиалотетрагексозилганглиозиды на абсорбирующих эпителиальных клетках, вызывая эндоцитоз ферментативной субъединицы A, после чего он рибозилирует АДФ субъединицу G-белка, который контролирует активность аденилилциклазы.Хотя вирулентность является многофакторной, холерный токсин является ключевым фактором, ответственным за обильную секреторную диарею, которая возникает у инфицированных людей. Трансмиссивные элементы, такие как лизогенный бактериофаг , несущий гены токсина холеры 22 и элемент SXT, несущий гены устойчивости к антибиотикам 23 , будут продолжать определять эволюцию V. cholerae .

Биологические факторы и факторы окружающей среды, которые способствуют динамике вспышек холеры, продолжают оставаться предметом интенсивных исследований.Было опубликовано несколько обзорных статей, посвященных важности факторов окружающей среды в распространении вспышек холеры. 24–26 . В этом обзоре мы сосредоточимся скорее на трех биологических факторах, которые, как считается, играют важную роль в возникновении и формировании вспышек холеры: восприимчивость хозяина, вирулентность V. cholerae и литические бактериофаги. Ниже мы обсудим эту троицу факторов, связанных с динамическим характером вспышек холеры.

Человек-хозяин

Клинический спектр

V.cholerae инфекция

Инфекция V. cholerae вызывает клинический спектр, который варьируется от бессимптомной колонизации до холеры гравис, наиболее тяжелой формы болезни (). После приема организмом зараженной пищи или воды V. cholerae колонизирует тонкий кишечник в течение 12–72 часов до появления симптомов. Холера часто начинается с желудочных спазмов и рвоты, за которыми следует диарея, которая может прогрессировать до потери жидкости до 1 литра в час. 27 .Эти потери приводят к серьезному истощению объема жидкости и метаболическому ацидозу, что может привести к коллапсу кровообращения и смерти 7 . Стул с рисовой водой обычно содержит от 10 10 до 10 12 вибрионов на литр. Пациенты с симптомами могут выделять вибрионы до начала болезни 28,29 и будут продолжать выделять организмы в течение 1-2 недель 30,31 . Бессимптомные пациенты обычно выделяют вибрионы со стулом только в течение 1 дня, примерно 10 3 вибрионов на грамм стула 32 .Следовательно, распределение пациентов с симптомами влияет на количество V. cholerae , которые выделяются для последующей передачи.

Таблица 1

Клинический спектр инфекции Vibrio cholerae

Бессимптомная инфекция Легкая инфекция Тяжелая инфекция

Рвота и обильная диарея
Обезвоживание Нет От легкой до легкой От средней до тяжелой (гиповолемический шок)
Характеристики стула Нормальный водный стул Нормальный жидкий стул
Вибрионов на грамм стула До 10 5 До 10 8 10 7 до 10 9 в стуле (и рвотных массах)
Лечение 900 Нет Раствор для пероральной регидратации (O RS) ПРС, внутривенные жидкости и антибиотики
Смертность Нет Нет Без лечения: до 50% Вылечено: менее 1%
9 из них с симптомами варьируется в зависимости от возраста и эндемичности заболевания.В эндемичных условиях, таких как дельта реки Ганг, дети с большей вероятностью будут госпитализированы с тяжелым заболеванием 33 . За последние 20 лет преобладание тяжелых случаев переместилось на детей младшего возраста, с пиком тяжелых случаев в возрасте 2 лет 34 . Напротив, при эпидемических моделях передачи, например, когда V. cholerae вводят иммунологически неинфицированным населением, все возрастные группы кажутся одинаково восприимчивыми к симптоматической инфекции 16,35–37 .

Бессимптомные случаи также могут способствовать распространению микроорганизма, хотя и на гораздо более низком уровне, чем пациенты с симптомами, и могут отражать важный компонент приобретенного иммунитета, который наблюдается в некоторых сообществах. Однако бессимптомные случаи часто трудно задокументировать. Четырехкратное повышение титра вибриоцидного антитела в сыворотке крови является полезной мерой для выявления бессимптомных людей, которые могут быть инфицированы, но от которых невозможно изолировать организм.Используя положительный результат посева из ректального мазка или ответ на вибриоцидные антитела для определения инфекции, недавно было обнаружено, что у бангладешских детей в возрасте до 5 лет вероятность появления симптомов в 2–3 раза выше, чем у детей старше 5 лет 35 . Частота симптомов во всех возрастных группах в этом исследовании составила 57% 35 . Это соответствует показателям симптоматических инфекций, которые были обнаружены в связи с классическими штаммами в более ранней литературе 32,38–40 , но намного выше показателей, зарегистрированных для инфекций Эль-Тор в 1970-е годы 40 .Таким образом, бессимптомные случаи могут составлять примерно половину всех случаев. Будущие исследования иммунологии бессимптомных пациентов помогут оценить их вклад в защитный иммунитет на популяционном уровне.

Восприимчивость к холере

Генетические факторы хозяина и факторы питания влияют на восприимчивость к холере. Антигены группы гистокрови ABH представляют собой набор клеточных и секретируемых гликолипидов и гликопротеинов, которые являются ключевыми детерминантами восприимчивости хозяина к ряду желудочно-кишечных патогенов; они, по-видимому, влияют на специфичность рецептора клетки-хозяина в отношении связывания патогенов и токсинов.Фенотип O соответствует немодифицированному антигену H и связан со сниженным риском заражения V. cholerae . Однако, как только хозяин инфицирован, фенотип О ассоциируется с повышенным риском серьезных симптомов; механизм этого остается неизвестным. Распространенность фенотипа О варьируется среди человеческих популяций; его низкая распространенность в дельте реки Ганг предполагает, что существует отбор против этого фенотипа в эндемичной по холере зоне 35,41,42 .В популяциях с высокой распространенностью группы крови O, например, в странах Латинской Америки, болезнь протекает тяжелее, и потребности в регидратации и госпитализации инфицированных людей существенно выше 43,44 .

Хотя антиген группы крови H является единственным давно признанным генетическим фактором, связанным с восприимчивостью к холере, другие генетические полиморфизмы, вероятно, были выбраны за или против, учитывая исторически высокие показатели смертности от холеры.Например, недавнее исследование связывало тяжелую холеру с вариантом LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) 45 , консервативного белка врожденного иммунитета. Экспрессия LPLUNC1 повышается в эпителии тонкой кишки во время острой холеры и может влиять на течение инфекции V. cholerae 46 .

Недоедание, измеряемое по задержке линейного роста, не является фактором риска заражения V. cholerae 35 .Однако дефицит ретинола (витамина А), питательного микроэлемента, который способствует иммунитету слизистых оболочек, является фактором риска, связанным как с инфекцией V. cholerae , так и с развитием симптоматического заболевания 35 . Цинк, еще один питательный микроэлемент, который способствует иммунитету слизистых оболочек, может истощаться во время диарейного заболевания. 47 . Оральный цинк устраняет этот дефицит у детей, что приводит к значительному сокращению объема стула и времени до прекращения диареи 44 .

Защитный иммунитет

Несколько исследований демонстрируют, что клинически очевидная инфекция V. cholerae индуцирует защитный иммунитет против последующей инфекции (ВСТАВКА 1). Заражение североамериканских добровольцев классическим биотипом и биотипом Эль-Тор обеспечивало 100% и 90% защиту соответственно от последующего заражения 31,48 . Аналогичным образом, в эндемических условиях было обнаружено, что более 90% пациентов с тяжелым заболеванием, вызванным инфекцией классическим биотипом, были защищены от инфекции в будущем, на основании наблюдаемых и ожидаемых показателей госпитализации в связи со вторым эпизодом холеры в США. это население 33 ; аналогичные результаты были получены в отдельном исследовании 49 .Механизм этого защитного иммунитета против инфекции и болезни V. cholerae неизвестен.

Ящик 1 | Иммунный ответ человека на

Vibrio cholerae

Врожденный ответ

Холера считается прототипом невоспалительной инфекции. Часто отсутствуют грубые изменения слизистой оболочки кишечника или архитектурной целостности тонкой кишки. Однако наблюдается повышенная регуляция провоспалительных цитокинов (включая интерлейкин-1β и фактор некроза опухоли), экспрессии различных бактерицидных белков и миграции нейтрофилов в собственную пластинку во время острой холеры.Естественная вариабельность врожденного иммунного ответа может влиять на восприимчивость, что подтверждается открытием, что полиморфизм в промоторной области гена LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) связан с повышенным риском холеры.

Адаптивный ответ

Как адаптивный иммунный ответ на холеру обеспечивает защиту от последующего заболевания, неизвестно. Поскольку Vibrio cholerae неинвазивен, было высказано предположение, что секреторный иммуноглобулин А кишечника (sIgA) защищает от колонизации слизистой оболочки.Примерно через 8 дней после начала холеры наблюдается пик циркуляции антиген-специфических лимфоцитов V. cholerae , которые экспрессируют хемокиновые рецепторы кишечника (см. Рисунок) 112 . Эти лимфоциты вскоре становятся необнаруживаемыми в крови, поскольку они возвращаются на слизистую оболочку кишечника, где они приводят к увеличению секреции sIgA в кишечнике. Реакции сывороточных антител, такие как реакция вибриоцидных антител, также достигают максимума через 1-3 недели после заражения. Хотя высокие сывороточные титры вибриоцидных антител и IgA, специфичного к холерному токсину, коррелируют с защитой от инфекции, эти антитела снижаются до исходного уровня через год после заражения, задолго до того, как защитный иммунитет к холере ослабевает.Точно так же у добровольцев, инфицированных V. cholerae , уровни sIgA слизистой оболочки снижаются до исходного уровня в течение нескольких месяцев. Однако, когда добровольцев, у которых больше нет определяемых антител, повторно провоцируют антигенов V. cholerae , они демонстрируют стойкую способность вызывать анамнестический иммунный ответ, развивая пиковую кишечную секрецию антител так же быстро, как в течение трех дней. Следовательно, возможно, что скорость анамнестического ответа на повторное воздействие, а не заранее сформированные антитела, может опосредовать защиту от холеры.Это подтверждается недавними данными о том, что холера вызывает ответ В-клеток памяти, который выявляется в течение по крайней мере 1 года после заражения холерой 113 .

Выявлено несколько коррелятов иммунитета. Лучше всего охарактеризованным серологическим маркером иммунитета является титр сывороточных вибриоцидных антител. Это антитело является комплемент-зависимым бактерицидным антителом, титр которого заметно увеличивается после заболевания, но снижается до исходного уровня через 6–9 месяцев 7 . В Бангладеш вибриоцидные антитела обнаруживаются у большинства людей в возрасте 10–15 лет и связаны со снижением риска инфицирования.Поскольку V. cholerae является неинвазивным патогеном, эти сывороточные антитела могут не вносить непосредственный вклад в защиту на уровне слизистой оболочки кишечника, но они могут быть полезны для оценки степени защитного иммунитета на уровне популяции. Антитела иммуноглобулина A, специфичные к TCP, LPS или субъединице B холерного токсина, коррелируют с защитой от последующей инфекции и болезни 35 .

Полевые испытания вакцины обеспечивают контролируемую оценку устойчивости адаптивных иммунных ответов к В.холера . В крупнейшем контролируемом исследовании 62 285 участников в Бангладеш были рандомизированы для получения 3 пероральных доз (с интервалом в 6 недель) комбинации убитых целых клеток (Эль Тор и классические) плюс субъединица B холерного токсина (вакцина B – WC), цельноклеточный компонент без B-субъединицы (вакцина WC) или убитый Escherichia coli K12 в качестве контроля. Через 3 года наблюдения две вакцины (B – WC и WC) имели 50% и 52% защитную эффективность, соответственно 50 . Для детей младше 5 лет эффективность составила 23–26%.Через 6 месяцев наблюдения вакцина B – WC дала 85% защиту. 51 . Ведутся споры о том, демонстрируют ли эти данные эффективность, достаточную для широкомасштабного распространения. В настоящее время предпринимаются усилия по созданию новых вакцин для обеспечения более высоких и устойчивых ответов у реципиентов, а также для снижения производственных затрат с целью преодоления как иммунологических, так и производственных препятствий, которые ограничивают применимость существующих вакцин против холеры. 52–55 .

Роль, которую коллективный иммунитет играет в замедлении передачи холеры, недавно стала оценена.При испытаниях эффективности вакцины отдельные пациенты рандомизируются, чтобы гарантировать, что защитная эффективность отражает только прямой эффект вакцины 56 . Это означает, что при лицензировании вакцин не учитываются их преимущества на уровне населения. Обсуждаемое выше испытание вакцины B – WC имело уровень охвата от 4% до 65% в разных регионах 50,57 . Когда уровни заболеваемости холерой сравнивались с показателями охвата вакцинацией в конкретных регионах, было обнаружено, что заболеваемость среди реципиентов плацебо обратно коррелировала с уровнем охвата прививками 57 : там, где охват был высоким, даже среди тех, кто этого не сделал. Получившие вакцину, вероятность заболеть холерой по-прежнему на четверть ниже, чем у невакцинированных лиц в районах с низким охватом.Когда коллективный иммунитет включен в имитационные модели эффективности вакцины, охват вакцинацией B – WC 50% в эндемичных районах приводит к снижению общего числа случаев на 93%. 58 . Взятые вместе, эти исследования доказывают, что вакцина B-WC может обеспечить достаточную защиту для широкомасштабной вакцинации в эндемичных регионах и что коллективный иммунитет, вероятно, будет играть важную роль в ограничении передачи холеры.

Передача с точки зрения хозяина

Несколько групп создали математические модели, использующие перспективы как хозяина, так и патогена, чтобы помочь объяснить и предсказать природу вспышек холеры.Цель большинства этих моделей — точно отразить резкий рост и снижение заболеваемости холерой, которое наблюдается два раза в год в регионах вокруг Бенгальского залива. Модель была построена для включения показателей передачи, фактора сезонных колебаний и расчета количества восприимчивых людей на основе различного защитного иммунитета от прошлой инфекции. 59–61 . Эти идеи были основаны на проверке гипотез о том, что высокое соотношение бессимптомных и симптоматических случаев связано с разрешением вспышки и что короткий интервал защитного иммунитета (2–12 недель) после заражения допускает последующие вспышки, которые наблюдаются в Бангладеш 62 .Результаты показывают, что сочетание многих бессимптомных случаев и недолговечного иммунитета, а не молчаливых шеддеров , дает модель, которая лучше всего отражает эпидемиологические данные из Западной Бенгалии. У модели есть ограничения: она предполагает соотношение бессимптомных и симптоматических случаев, которое намного выше, чем наблюдаемое в последние годы, и она была протестирована с использованием показателей смертности, которые связаны с клинически определенной холерой из Западной Бенгалии между 1891 и 1940 годами — эпохой до открытия. ротавирусной и энтеротоксигенной E.coli , которые являются смешивающими факторами. Несмотря на свои недостатки, эти модели улучшают наше понимание сложной динамики вспышек и показывают, насколько мощной может быть реакция хозяина в ограничении передачи. Новые модели передачи холеры должны по-прежнему включать факторы сезонных колебаний, соотношение бессимптомных и симптоматических случаев и темпы снижения защитного иммунитета.

Возбудитель

Инфекционные дозы в моделях на животных

Инфекция человека-хозяина представляет собой многоступенчатый процесс: V.cholerae необходимо принимать внутрь в дозе, достаточной для преодоления врожденной иммунной защиты, затем экспрессии факторов вирулентности для колонизации тонкой кишки и, наконец, для координации выхода из организма хозяина для облегчения передачи 63 (). Модели холеры на животных в значительной степени являются показателями успешности первых двух стадий 64 . Используя модель инфекции у новорожденных мышей, было показано, что V. cholerae , которые выделяются с рисовым водяным стулом человека, находятся в гиперинфекционном состоянии, демонстрируя ID 50 из 10–100 клеток по сравнению с примерно 500 клетками для В.cholerae , выращенный in vitro 65–67 . Гиперинфекция также была задокументирована у Citrobacter rodentium 68 , а гиперинфекционный V. cholerae может быть воспроизведен при прохождении через мышиную модель инфекции 68,69 . Определение и фенотип гиперинфективности противоречивы из-за сложностей при выборе наиболее подходящих условий культивирования для роста контрольного штамма.

Жизненный цикл патогенного Vibrio cholerae

Токсигенные штаммы Vibrio cholerae сохраняются в водной среде вместе с нетоксигенными штаммами, чему способствует образование биопленок на биологических поверхностях и использование хитина в качестве источника углерода и азота.При попадании этих адаптированных к водной среде бактерий в загрязненную пищу или воду токсигенные штаммы колонизируют тонкий кишечник, размножаются, выделяют токсин холеры и возвращаются в окружающую среду хозяином при секреторной диарее. Патогенные микроорганизмы, выделяемые калом, находятся в преходящем гиперинфекционном состоянии, которое способствует усилению вспышки за счет передачи последующим хозяевам.

Молекулярные механизмы, которые способствуют гиперинфективности у V. cholerae , многофакторны.Исследования на микроматрицах показали, что глобальный профиль транскрипции гиперинфекционных V. cholerae из рисового водяного стула отличается от такового у V. cholerae , выращенных in vitro или верхних отделов тонкой кишки V. cholerae , выведенных в рвотных массах 65, 70,71 (). Большинство известных генов вирулентности, включая гены холерного токсина и TCP, подавляются в стуле из рисовой воды, но механизм этого подавления остается неизвестным. Еще одна уникальная особенность — подавление генов хемотаксиса, что удивительно, учитывая, что планктонные вибрионы, выделяемые пациентами, являются жгутиками и очень подвижны.Было показано, что это подавление хемотаксиса является одним из компонентов гиперинфективности, потому что подвижные, но не хемотаксирующие мутанты V. cholerae являются гиперинфекционными 66,72,73 .

Паттерны экспрессии гена Vibrio cholerae на разных стадиях жизненного цикла

При проглатывании (нижняя правая панель) Vibrio cholerae использует подвижность и муциназы для проникновения через слизистый гель и N -ацетилглюкозамин-связывающий белок A ( GbpA) и другие факторы колонизации эпителия тонкой кишки.Существенные изменения в экспрессии генов сопровождают этот переход от пруда к острой инфекции, включая, помимо прочего, индукцию vieA, которая кодирует фосфодиэстеразу, гидролизующую вторичный мессенджер циклический ди-GMP, и гены, регулируемые ToxR, включая гены холерного токсина и самоагрегирующиеся пилусы, регулируемые токсинами (TCP). Кроме того, репрессируются несколько генов, например, гены хитин-связывающего маннозу-чувствительного гемагглютинина пилуса (MSHA) и стрессового сигма-фактора RpoS.На поздней стадии инфекции (нижняя левая панель) V. cholerae снова изменяет экспрессию своего гена, чтобы отделиться от эпителия — «реакция бегства» — и подготовиться к передаче другому хозяину (например, распространение в домашних условиях). ) или попадание в водную среду. Изменения на поздних стадиях включают индукцию генов синтеза c-di-GMP (дигуанилилциклазы), систем поглощения питательных веществ (таких как регулон регуляции поглощения железа (Fur)) и подвижности (Fla), а также репрессию таких генов, как для хемотаксиса (Che) и регулона ToxR.Возникающее в результате состояние «подвижное, но не хемотаксическое» способствует гиперинфективности. Если бактерии, выделяющиеся со стулом, не попадают в организм другого хозяина в течение короткого периода времени, то их ждет одна из двух судьб (верхняя панель): укоренение в водной среде путем нахождения подходящих источников питательных веществ, таких как хитин, или распад в « активную среду ». но некультивируемое состояние. При воздействии хитина V. cholerae индуцирует несколько генов, участвующих в присоединении и катаболизме хитина (регулон ChiS), а также гены, участвующие в генетической компетентности (регулон TfoX).Образование биопленок на поверхности опосредуется индукцией регулона Vps, который кодирует внеклеточный полисахарид. Во время перехода в активное, но не культивируемое состояние, происходят большие изменения в экспрессии генов, поскольку V. cholerae пытается адаптироваться к условиям с низким содержанием питательных веществ. К ним относятся индукция генов фосфатного и азотного голодания (phoB и glnB-1 соответственно) и репрессия генов трансляционного аппарата.

Транскриптом V. cholerae , пассированный от животных, также уникален и был выявлен в двух недавних исследованиях.Во-первых, существует скоординированная «реакция бегства», которая позволяет организму отделяться от ворсинок кишечника, готовясь к выходу из организма хозяина; это регулируется стрессом и стационарной фазой сигма-фактора РНК-полимеразы RpoS 74 . Во-вторых, на более поздних стадиях заражения животных, V. cholerae активирует экспрессию генов, которые не требуются для инфекции, но важны для выживания при переходе в водную среду 75 . Эта предварительная индукция генов выживания в окружающей среде на поздних этапах инфекции может подготовить организм к жесткому селективному давлению в воде пруда, облегчая передачу 24,65 .В большинстве описанных выше исследований бактериальные клетки, составлявшие инфекционную дозу, были планктонными клетками, а не агрегатами. Было проведено одно исследование с участием добровольцев, в котором добровольцам вводили V. cholerae в морщинистой форме (то есть агрегатной и продуцирующей экзополисахариды); Инфекционная доза была аналогична дозе, наблюдаемой для планктонных форм, а морщинистые формы выделялись добровольцами 76 . Кроме того, люди выделяют V. cholerae в виде сложных биопленко-подобных агрегатов 67,77,78 .Идентификатор ID 50 V. cholerae выделяется в совокупности, и роль, которую эти совокупности играют в передаче, еще предстоит определить.

Инфекционная доза у людей

Инфекционная доза V. cholerae у людей сильно варьируется в зависимости от бактериального штамма и хозяина. Дозы 10 8 –10 11 клеток требовались для обеспечения последовательной колонизации у здоровых добровольцев из Северной Америки 7,29,31 . Инфекционная доза снижается до 10 4 –10 8 при использовании бикарбонатного буфера для нейтрализации желудочной кислоты незадолго до инокуляции; этот метод дает 90% заражений 7,29,31 .В домашнем хозяйстве пища может действовать как кислотный буфер; В исследованиях на добровольцах введение бактерии как часть «еды» из риса, рыбы, заварного крема и обезжиренного молока дало результаты, сравнимые с результатами, наблюдаемыми при одновременном введении бактерий и бикарбоната 79 . В эндемичных условиях инфекционная доза неизвестна. Подсчет V. cholerae в образцах домашнего хозяйства и окружающей среды исторически сложен, требует быстрого реагирования и использования флуоресцентной микроскопии для подсчета тех бактерий, культивирование которых может оказаться затруднительным. 80 .

Клиническое наблюдение, что буферная кислота желудочного сока снижает инфекционную дозу, предполагает, что бактериальные гены, участвующие в кислотной устойчивости, могут способствовать вирулентности. Сигнатурный мутагенез (STM) был использован для поиска подмножества генов вирулентности, которые вносят вклад в кислотостойкость in vitro 81 . Удаление этих генов ослабило V. cholerae в модели инфекции у новорожденных мышей, что подтверждает их роль в вирулентности. Кроме того, обнажая В. дикого типа.cholerae к кислоте непосредственно перед инокуляцией мышей давало большое конкурентное преимущество перед неадаптированными к кислоте бактериями 82 . Эти данные, наряду с другими, демонстрируют, что бактерии, выращенные in vitro , могут стать более заразными в результате воздействия стресса. Кроме того, эти результаты могут иметь клиническое значение в тех регионах мира, где распространено пониженное производство кислоты в желудке (ахлоргидрия), вторичное по отношению к инфекции Helicobacter pylori, например, Бангладеш 7 .

Передача с точки зрения патогена

Роль, которую гиперинфекция играет в быстром распространении холеры среди населения в начале вспышки, остается непроверенной. V. cholerae остается гиперинфекционным в течение как минимум 5 часов после попадания от пациентов в водную среду, что позволяет предположить, что гиперинфекция играет особую роль в передаче инфекции в районах с высокой плотностью населения, где существует вероятность контакта с организмом другого человека. в относительно короткие сроки 65,70 .Одна модель передачи холеры предполагает, что вспышка начинается, когда либо уже инфицированный индексный случай мигрирует и загрязняет новую территорию, либо V. cholerae , потребляемая из естественного водоема окружающей среды, создает новый индексный случай у постоянного населения. В обоих сценариях не исключено, что ускорение вспышки является результатом быстрого распространения гиперинфекционного вируса V. cholerae от человека к человеку при кратковременном нахождении в окружающей среде.Модели передачи, которые допускают только случайное попадание V. cholerae в окружающую среду, не предсказывают резкого роста числа случаев, которые наблюдаются в начале вспышек по всему миру, включая те, которые происходят раз в два года в Бангладеш 11 . Однако модели, которые включают гиперинфекцию 83 , лучше отражают этот резкий подъем.

Поддержание передачи через водоемы

Эндемичная холера встречается в регионах с естественными водными резервуарами токсигенных и нетоксигенных V.cholerae , где бактерии могут сохраняться либо в свободноживущем состоянии, либо в ассоциации с фитопланктоном 84–86 , зоопланктоном 85–88 или биотическим и абиотическим детритом 89,90 . Эти взаимодействия могут быть как полезными, так и антагонистическими. 91,92 . Ассоциации вообще не случайны. Например, V. cholerae развил механизмы для присоединения, разложения и использования хитина в качестве источника углерода и азота 93–95 ().Для экологических изолятов методы ДНК-типирования, основанные на секвенировании гипервариабельных локусов повторов короткой последовательности, начали лучше определять взаимосвязь между нетоксигенными и токсигенными V. cholerae . Было обнаружено, что два сельских региона, разделенных 80 км в дельте реки Ганг, содержат отдельные, разнообразные штаммы из экологических и клинических условий 96 . Изоляты из окружающей среды состояли как из токсигенных, так и из нетоксигенных штаммов O1 El Tor и O139 на фоне нетоксигенных штаммов, представляющих многие серогруппы.Напротив, клинические изоляты были строго токсигенными O1 El Tor и O139, но относились к разным типам штаммов. Эти результаты демонстрируют, что в организме хозяина токсигенные штаммы обладают селективным преимуществом перед нетоксигенными штаммами из окружающей среды. Взаимосвязь между экологическими и клиническими штаммами может быть разной в других регионах мира и, вероятно, будет варьироваться в зависимости от окружающей среды, санитарии, инфраструктуры и плотности населения.

Селективное давление в водной среде

Некоторые бактериальные патогены, в том числе V.cholerae , теряют способность культивироваться на стандартных средах после переноса от хозяина или лаборатории в водную среду 24,97 . Этот фенотип традиционно известен как «жизнеспособное, но не культивируемое» (VBNC) состояние, поскольку клетки сохраняют способность к основным метаболическим процессам, таким как синтез белка, дыхание и поддержание целостности мембран, несмотря на их неспособность культивироваться 24 . Альтернативный, более консервативный термин, который применяется к этому состоянию, — «активный, но не культивируемый» (ABNC), поскольку остается неясным, живы ли еще бактерии, утратившие культивирование на стандартных средах 98 .

V. cholerae может быстро превратиться в ABNC, когда покидает человека-хозяина и попадает в водную среду. Исследования с участием V. cholerae , полученных от пациента и in vitro , которые подвергались диализу в прудовой воде, продемонстрировали снижение культивирования на 60% и 90% через 5 часов и 24 часа, соответственно, 65 . Анализ микроматрицы продемонстрировал быстрые и поразительные изменения транскрипции, когда бактерии входили в состояние ABNC 65 . Эти изменения включали индукцию генов поглощения фосфатов и фиксированного азота и подавление генов синтеза белка и энергетического метаболизма, что согласуется с низкими уровнями источников углерода, фосфатов и фиксированного азота, которые часто встречаются в водной среде.Остается проверить, будет ли включение твердых частиц, которые были отфильтрованы из воды пруда в вышеупомянутом исследовании, продлить культивирование V. cholerae . Учитывая возможность такого быстрого снижения культивируемости, исследователи задали вопрос, является ли большинство из клеток V. cholerae , заражающих людей из окружающей среды, ABNC или культивируемыми клетками. Одна из гипотез гласит, что если культивируемые клетки более заразны, чем клетки ABNC, то ID 50 , рассчитанный по общему количеству клеток, будет увеличиваться по мере уменьшения процента культивируемых клеток в популяции.Это было подтверждено в недавних экспериментах, предполагающих, что основными виновниками инфицирования человека, вероятно, являются культивируемые клеток V. cholerae 65 . В будущих математических моделях передачи V. cholerae должна быть учтена возможность уменьшения скорости культивирования.

V. cholerae литический бактериофаг

Биология вибриофагов

Восемьдесят лет назад было высказано предположение, что бактериофаги могут контролировать естественные популяции патогенов 99,100 .Более поздние исследования в области морской микробиологии выявили элегантный баланс между бактериофагами и их цианобактериальной добычей 101 . С клинической точки зрения бактериофаги в принципе могут использоваться для профилактики или лечения инфекций. Действительно, документально подтверждена «фаговая терапия» против холеры и других заболеваний (ВСТАВКА 2). Существует не менее 200 видов бактериофагов, которые инфицируют V. cholerae , известных как вибриофаги 102,103 . Нитевидный лизогенный вибриофаг CTXΦ является одним из наиболее охарактеризованных, поскольку он несет гены, кодирующие токсин холеры 22 .Первым секвенированным геномом хвостатого вибриофага был геном κ139; этот вибриофаг может быть как лизогенным, так и литическим. Основным механизмом, с помощью которого V. cholerae O1 становится устойчивым к κ139 и многим другим вибриофагам, является мутация кластера генов rfb , который кодирует ферменты для синтеза LPS 104 . В отсутствие рецептора антигена LPS O вибриофаг не может связываться или инфицировать бактериальную клетку. Все rfb -нулевые мутанты V. cholerae O1, которые были протестированы на сегодняшний день, аттенуированы 65,67,105 .

Ящик 2 | Исследование бактериофагов

В 1915–1917 годах Twort 114 и d’Hérelle 115 независимо друг от друга открыли бактериофаги. Д’Эрелль определил, что бактериальная инфекция на животных моделях может быть ослаблена бактериофагами, и в 1925 году состояние пациентов с бубонной чумой улучшилось после того, как д’Эрелль ввел бактериофаги непосредственно в их бубоны (увеличенные лимфатические узлы). 116 . Эти открытия привели к исследованию бактериофагов, в задачу которого входило изучение терапии бактериофагами холеры в Индии 116 .В их первом испытании терапии сравнивали 244 нелеченных пациента с холерой и 219 пациентов с холерой, которых лечили вибриофагами; в нелеченой группе смертность составила 20%, тогда как в обработанной группе — 6,8% (χ 2 , p <0,01). Другие исследования показали аналогичные результаты 5,116,117 . Несмотря на некоторые ограничения, характерные для той эпохи, расследование добилось достаточного успеха, чтобы расширить свои усилия. 5 .

За 1928, 1929 и 1934 годы, всего 36 000, 130 823 и 871 316 доз вибриофагов были подготовлены и распространены сотрудниками по расследованию в то время, когда начались вспышки в конкретных исследуемых сообществах в Индии 116 .Вибриофаги также распространялись в общественных источниках питьевой воды для профилактики. Смертность от холеры сравнивалась с контрольными сообществами до и после вмешательств. Трехлетний уровень смертности от холеры снизился с 30 до 2 на 10 000 в регионах, которые лечились вибриофагами 117 . Хотя эти исследования имели несколько ограничений, они предоставляют единственные доступные данные об эффективности терапии вибриофагами. Достижения в области регидратации и антибиотикотерапии в 1930-х и 1940-х годах сделали испытания бактериофагов, основанные на конечных точках смертности, неэтичными и статистически сложными 116,118 .

Вибриофаги в окружающей среде

В 1930-х годах было обнаружено, что случаи холеры положительно коррелировали с изоляцией вибриофагов в водной среде 106 . В наше время была описана отсроченная положительная согласованность между ростом числа случаев холеры и последующим ростом вибриофагов в окружающей среде. 107 . Модель, разработанная Jensen et al. предсказывает, что если вспышка будет инициирована увеличением В.cholerae в окружающей среде, плотность вибриофагов впоследствии будет увеличиваться, что в конечном итоге будет способствовать сокращению вспышки 108 . В Международном центре исследований диарейных заболеваний в Бангладеш (ICDDRB) рост случаев холеры был связан с согласованным, но отсроченным увеличением доли больных холерой с вибриофагами в стуле 109 . Вибриофаги, идентифицированные в этом исследовании, были литическими вибриофагами (JSF4), хотя у пациентов можно выделить несколько типов вибриофагов 107 .Титры вибриофагов в стуле из рисовой воды варьировались от 10 2 до 10 8 бляшкообразующих единиц на миллилитр, что согласуется с другими публикациями 65,67 . Несмотря на присутствие литических вибриофагов, все стула были положительными на V. cholerae и V. cholerae , как правило, по количеству вибриофагов, по крайней мере, на порядок. Последующие исследования показали, что большинство бактериальных изолятов из стула все еще чувствительны к вибриофагам 65,67 .Пока неясно, почему вибриофаги в кишечнике человека не могут избавиться от инфекции V. cholerae , но эта «неудача» может играть важную роль в распространении клональной экспансии фагов во время вспышек. 109 .

Передача с точки зрения вибриофага

Современные эксперименты начали проверять гипотезу о том, что фаги могут ослаблять бактериальную передачу. Например, тесты подвижности с использованием микроскопии в темном поле были использованы для быстрого скрининга стула из рисовой воды на наличие вибриофагов; стул, который был отрицательным в темном поле (не содержал подвижных вибрионов), с большей вероятностью содержал литические вибриофаги и имел низкое количество культивируемых клеток, но схожее общее количество клеток 77 .С помощью этого косвенного измерения для фагов было обнаружено, что по крайней мере половина пациентов с холерой, которые наблюдались в течение 5-летнего периода в ICDDRB, содержали вибриофаги, а домашние контакты пациентов с положительным индексом вибриофагов имели меньшую вероятность инфицирования. с V. cholerae , чем люди, которые контактировали с пациентом, который не был фагоположительным 77 . Эти результаты согласуются с выводом о десятикратном снижении инфекционной дозы В.cholerae , когда в стуле хозяина есть вибриофаги 67 .

V. cholerae обычно превосходит литические бактериофаги сразу после пассажа от хозяина 65 , 67 . В лабораторных экспериментах с использованием стула из рисовой воды, выращенного человеком, бактериофаги имеют начальный всплеск репликации в течение первых нескольких часов в водной среде и могут достигать отношения бактериофагов к бактериям примерно 1: 1 за 24 часа 65,67 .Хотя гиперинфекция может сохраняться в течение нескольких часов после пассажа от хозяина 65,70 , потеря культивирования (обсуждалось выше) и расцвет бактериофагов в водной среде, вероятно, объединяются, чтобы блокировать передачу 65 . Контрольные эксперименты с , полученным in vitro , V. cholerae и бактериофагами подтверждают, что бактериофаги могут ограничивать бремя инфекции 65,67 . Однако бактериофаги никогда не могут полностью блокировать инфекцию, поскольку мутанты V.cholerae , у которых отсутствует зрелый LPS, избегают хищничества и колонизируют мышей, хотя и в меньшем количестве. Как уже упоминалось, мутанты LPS ослаблены и могут быть потеряны в естественном жизненном цикле V. cholerae 65,67,105 .

Таким образом, динамическое взаимодействие между бактериофагом и бактерией в воде пруда предполагает, что модель передачи холеры должна включать в себя меру быстрого снижения способности бактерий к культивированию и уничтожения бактериофагами. В закрытой экспериментальной системе передача В.cholerae можно свести к минимуму, если эти два фактора сочетаются в водной среде. Следовательно, вероятно, будет преимущество пригодности для V. cholerae , которое быстро передается следующему хозяину, когда культивируемость все еще высока, а концентрация бактериофагов все еще низкая. В этом обзоре упоминалось несколько моделей, которые предлагают разные объяснения роста и спада вспышек с точки зрения хозяина (клинический спектр и коллективный иммунитет), бактерии (гиперинфекция) и бактериофага (хищничество).Мы объединили несколько опубликованных моделей в одну рабочую диаграмму, чтобы побудить задуматься о том, как эти факторы могут взаимодействовать в естественной среде (). Лучшее понимание того, как функционирует интегрированная модель, может раскрыть возможности для вмешательств в области общественного здравоохранения.

Комбинированная модель передачи холеры с точки зрения хозяина и микроорганизмов

Общая популяция (H) питает пул восприимчивых хозяев (S), которые становятся инфекционными (I) после употребления Vibrio cholerae из окружающей среды. источник, с литическими бактериофагами или без них (Φ).Инфицированные люди имеют симптомы (I symp ) или бессимптомны (I asymp ) и выздоравливают (R) благодаря действиям своей иммунной системы и, возможно, литических бактериофагов, или погибают от инфекции (m). Выздоровевшие люди будут повторно попадать в пул восприимчивых с разной скоростью (//) в зависимости от степени защитного иммунитета. Литические фаги и гиперинфекционные V. cholerae (VC Hi ) выделяются симптоматическим хозяином в различных концентрациях; бессимптомные хозяева выделяют гораздо меньше бактерий (пунктирная линия).Клетки VC Hi быстро переходят к следующему хозяину, сохраняются в окружающей среде в виде культивируемых клеток с неизвестной инфекционностью (VC C ) или распадаются в «активное, но не культивируемое» состояние (VC ABNC ) с пониженной инфекционностью. Все три типа клеток плюс совокупные бактерии (не показаны), вероятно, играют смешанную роль в качестве резервуаров окружающей среды для будущих вспышек.

Заключительные замечания

Модель передачи, которая точно предсказывает масштабы возникающей вспышки, предоставит органам общественного здравоохранения полезную информацию для соответствующего масштабирования их ответных мер.Вмешательства, нацеленные на жизненно важные этапы передачи, могут быть эффективными для предотвращения вспышек. Иммунитет хозяина, гиперинфекция патогенов и фаги — все это факторы, которые можно использовать для борьбы со вспышкой. Например, централизованные центры управления отходами часто терпят неудачу в условиях нехватки ресурсов. Поскольку пациенты с симптомами выделяют более V. cholerae , а V. cholerae в стуле из рисовой воды является гиперинфекционным, вспышки холеры лучше всего остановить у источника, уменьшив воздействие на человека свежевыпущенного гиперинфекционного стула.Другими словами, при сохранении централизованного управления следует поощрять и проверять децентрализованные усилия по целевому управлению отходами в единице домашнего хозяйства. Эта концепция подчеркивает решающую важность уже проверенных, но простых мероприятий в домашних условиях, таких как использование кувшинов с узким горлышком, хлорирование хранящейся воды и мытье рук, для профилактики заболеваний. 110,111 .

Еще многое предстоит узнать об эффективности вакцины в естественных условиях холеры.Отказ от традиционных мер оценки эффективности вакцин путем включения преимуществ коллективного иммунитета продолжит раскрывать истинное влияние как существующих вакцин, так и вакцин, находящихся в разработке. Кроме того, понимание воздействия хищничества бактериофагов и того, как вакцины снижают пул восприимчивости до такой степени, что передача не может продолжаться, являются важными областями для будущих исследований. Ответы на многие вопросы, поставленные в этом обзоре, имеют решающее значение для стран с ограниченными ресурсами, таких как Зимбабве, для оптимизации использования ограниченных запасов вакцины и борьбы с пагубными последствиями неудовлетворительной санитарии.

динамика хозяина, патогена и бактериофага

Abstract

Зимбабве представляет собой самый последний пример трагедии, которая постигает страну и ее народ, когда поражает холера. Вспышка 2008–2009 гг. Быстро распространилась по каждой провинции и привела к уровню смертности, аналогичному тем, которые наблюдались в результате инфекций холеры сто лет назад. В этом обзоре мы выделяем достижения, которые помогут понять, как взаимодействия между хозяином, бактериальным патогеном и литическим бактериофагом могут способствовать возникновению и подавлению вспышек холеры в эндемичных условиях и в развивающихся эпидемических регионах, таких как Зимбабве.

Диарейные болезни, включая холеру, являются ведущей причиной заболеваемости и второй по частоте причиной смерти среди детей в возрасте до 5 лет во всем мире 1,2 . Трудно определить точную заболеваемость и смертность от холеры, поскольку системы эпиднадзора во многих развивающихся странах находятся в зачаточном состоянии, и многие страны не решаются сообщать о случаях холеры в ВОЗ из-за потенциального негативного экономического воздействия этой болезни на торговлю и туризм. Сегодня реальное бремя холеры оценивается в несколько миллионов случаев в год, преимущественно в Азии и Африке. 3 .При оптимальной доставке пероральная регидратационная терапия может снизить уровень летальности с> 20%, наблюдавшихся ранее ( 4–6 ), до <1% 7 . Еще предстоит проделать большую работу, поскольку 27 стран сообщили о показателях летальности, превышающих пороговое значение в 1% в 2007 году (REF. 8).

Возбудитель холеры, грамотрицательная бактерия Vibrio cholerae, является факультативным патогеном, жизненный цикл которого имеет как человеческую, так и экологическую стадию 9,10 . V. cholerae дифференцируется серологически на основе антигена O его липополисахарида (ЛПС) (). Штаммы, продуцирующие токсин холеры ( токсигенных ), серогрупп O1 и O139 вызывают подавляющее большинство заболеваний. Серогруппа O1 подразделяется на два фенотипически различных биотипов , Эль-Тор и классический, второй из которых связан с более ранними пандемиями. Оба биотипа могут быть далее подразделены на два серотипа, Инаба и Огава 7 . За последние 20 лет Эль Тор заменил классический биотип 11 ; однако наследие классического биотипа сохраняется, поскольку появились штаммы Эль-Тор, содержащие токсин классической холеры. 12–14 .Серогруппа O139 впервые появилась в 1992 г. в результате мультигенной замены в кодирующей O антиген-кодирующей области штамма-предшественника O1 El Tor 15 . Хотя серогруппа O139 вызвала разрушительные вспышки в 1990-х годах, штамм Эль Тор остается доминирующим штаммом во всем мире 11,16,17 .

Филогенетическое родство штаммов Vibrio cholerae

На основании антигенности компонента О-антигена липополисахарида внешней мембраны в водной среде существует более 200 серогрупп (O1 – O200) Vibrio cholerae .Только подмножество штаммов серогрупп O1 и O139 являются токсигенными (Tox + ) и, следовательно, способны вызывать холеру при приеме внутрь; такие штаммы отбираются у хозяина. Другие штаммы нетоксигены (Tox ) и отбираются против них. Различные типы О-антигена обозначены цветом внешней мембраны и покрытого оболочкой жгутика (периплазматическое пространство и внутренняя мембрана не показаны). Капсулы присутствуют в подмножестве штаммов. Генотипы разных штаммов обозначены цветом цитоплазмы; обратите внимание, что Tox + O1 и O139 имеют по существу один и тот же генотип, за исключением генов O-антигена.

Патофизиология холеры описана в обширной литературе. Короче говоря, патогенные штаммы несут в себе ключевые факторы вирулентности, которые включают холерный токсин 18 и ко-регулируемый токсин (TCP) 19,20 , самосвязывающийся пилус, который связывает бактериальные клетки вместе 21 , возможно, чтобы противостоять силам сдвига. в тонком кишечнике хозяина. Токсин холеры представляет собой секретируемый токсин субъединицы AB 5 . Пентамер субъединицы B связывает моносиалотетрагексозилганглиозиды на абсорбирующих эпителиальных клетках, вызывая эндоцитоз ферментативной субъединицы A, после чего он рибозилирует АДФ субъединицу G-белка, который контролирует активность аденилилциклазы.Хотя вирулентность является многофакторной, холерный токсин является ключевым фактором, ответственным за обильную секреторную диарею, которая возникает у инфицированных людей. Трансмиссивные элементы, такие как лизогенный бактериофаг , несущий гены токсина холеры 22 и элемент SXT, несущий гены устойчивости к антибиотикам 23 , будут продолжать определять эволюцию V. cholerae .

Биологические факторы и факторы окружающей среды, которые способствуют динамике вспышек холеры, продолжают оставаться предметом интенсивных исследований.Было опубликовано несколько обзорных статей, посвященных важности факторов окружающей среды в распространении вспышек холеры. 24–26 . В этом обзоре мы сосредоточимся скорее на трех биологических факторах, которые, как считается, играют важную роль в возникновении и формировании вспышек холеры: восприимчивость хозяина, вирулентность V. cholerae и литические бактериофаги. Ниже мы обсудим эту троицу факторов, связанных с динамическим характером вспышек холеры.

Человек-хозяин

Клинический спектр

V.cholerae инфекция

Инфекция V. cholerae вызывает клинический спектр, который варьируется от бессимптомной колонизации до холеры гравис, наиболее тяжелой формы болезни (). После приема организмом зараженной пищи или воды V. cholerae колонизирует тонкий кишечник в течение 12–72 часов до появления симптомов. Холера часто начинается с желудочных спазмов и рвоты, за которыми следует диарея, которая может прогрессировать до потери жидкости до 1 литра в час. 27 .Эти потери приводят к серьезному истощению объема жидкости и метаболическому ацидозу, что может привести к коллапсу кровообращения и смерти 7 . Стул с рисовой водой обычно содержит от 10 10 до 10 12 вибрионов на литр. Пациенты с симптомами могут выделять вибрионы до начала болезни 28,29 и будут продолжать выделять организмы в течение 1-2 недель 30,31 . Бессимптомные пациенты обычно выделяют вибрионы со стулом только в течение 1 дня, примерно 10 3 вибрионов на грамм стула 32 .Следовательно, распределение пациентов с симптомами влияет на количество V. cholerae , которые выделяются для последующей передачи.

Таблица 1

Клинический спектр инфекции Vibrio cholerae

Бессимптомная инфекция Легкая инфекция Тяжелая инфекция

Рвота и обильная диарея
Обезвоживание Нет От легкой до легкой От средней до тяжелой (гиповолемический шок)
Характеристики стула Нормальный водный стул Нормальный жидкий стул
Вибрионов на грамм стула До 10 5 До 10 8 10 7 до 10 9 в стуле (и рвотных массах)
Лечение 900 Нет Раствор для пероральной регидратации (O RS) ПРС, внутривенные жидкости и антибиотики
Смертность Нет Нет Без лечения: до 50% Вылечено: менее 1%
9 из них с симптомами варьируется в зависимости от возраста и эндемичности заболевания.В эндемичных условиях, таких как дельта реки Ганг, дети с большей вероятностью будут госпитализированы с тяжелым заболеванием 33 . За последние 20 лет преобладание тяжелых случаев переместилось на детей младшего возраста, с пиком тяжелых случаев в возрасте 2 лет 34 . Напротив, при эпидемических моделях передачи, например, когда V. cholerae вводят иммунологически неинфицированным населением, все возрастные группы кажутся одинаково восприимчивыми к симптоматической инфекции 16,35–37 .

Бессимптомные случаи также могут способствовать распространению микроорганизма, хотя и на гораздо более низком уровне, чем пациенты с симптомами, и могут отражать важный компонент приобретенного иммунитета, который наблюдается в некоторых сообществах. Однако бессимптомные случаи часто трудно задокументировать. Четырехкратное повышение титра вибриоцидного антитела в сыворотке крови является полезной мерой для выявления бессимптомных людей, которые могут быть инфицированы, но от которых невозможно изолировать организм.Используя положительный результат посева из ректального мазка или ответ на вибриоцидные антитела для определения инфекции, недавно было обнаружено, что у бангладешских детей в возрасте до 5 лет вероятность появления симптомов в 2–3 раза выше, чем у детей старше 5 лет 35 . Частота симптомов во всех возрастных группах в этом исследовании составила 57% 35 . Это соответствует показателям симптоматических инфекций, которые были обнаружены в связи с классическими штаммами в более ранней литературе 32,38–40 , но намного выше показателей, зарегистрированных для инфекций Эль-Тор в 1970-е годы 40 .Таким образом, бессимптомные случаи могут составлять примерно половину всех случаев. Будущие исследования иммунологии бессимптомных пациентов помогут оценить их вклад в защитный иммунитет на популяционном уровне.

Восприимчивость к холере

Генетические факторы хозяина и факторы питания влияют на восприимчивость к холере. Антигены группы гистокрови ABH представляют собой набор клеточных и секретируемых гликолипидов и гликопротеинов, которые являются ключевыми детерминантами восприимчивости хозяина к ряду желудочно-кишечных патогенов; они, по-видимому, влияют на специфичность рецептора клетки-хозяина в отношении связывания патогенов и токсинов.Фенотип O соответствует немодифицированному антигену H и связан со сниженным риском заражения V. cholerae . Однако, как только хозяин инфицирован, фенотип О ассоциируется с повышенным риском серьезных симптомов; механизм этого остается неизвестным. Распространенность фенотипа О варьируется среди человеческих популяций; его низкая распространенность в дельте реки Ганг предполагает, что существует отбор против этого фенотипа в эндемичной по холере зоне 35,41,42 .В популяциях с высокой распространенностью группы крови O, например, в странах Латинской Америки, болезнь протекает тяжелее, и потребности в регидратации и госпитализации инфицированных людей существенно выше 43,44 .

Хотя антиген группы крови H является единственным давно признанным генетическим фактором, связанным с восприимчивостью к холере, другие генетические полиморфизмы, вероятно, были выбраны за или против, учитывая исторически высокие показатели смертности от холеры.Например, недавнее исследование связывало тяжелую холеру с вариантом LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) 45 , консервативного белка врожденного иммунитета. Экспрессия LPLUNC1 повышается в эпителии тонкой кишки во время острой холеры и может влиять на течение инфекции V. cholerae 46 .

Недоедание, измеряемое по задержке линейного роста, не является фактором риска заражения V. cholerae 35 .Однако дефицит ретинола (витамина А), питательного микроэлемента, который способствует иммунитету слизистых оболочек, является фактором риска, связанным как с инфекцией V. cholerae , так и с развитием симптоматического заболевания 35 . Цинк, еще один питательный микроэлемент, который способствует иммунитету слизистых оболочек, может истощаться во время диарейного заболевания. 47 . Оральный цинк устраняет этот дефицит у детей, что приводит к значительному сокращению объема стула и времени до прекращения диареи 44 .

Защитный иммунитет

Несколько исследований демонстрируют, что клинически очевидная инфекция V. cholerae индуцирует защитный иммунитет против последующей инфекции (ВСТАВКА 1). Заражение североамериканских добровольцев классическим биотипом и биотипом Эль-Тор обеспечивало 100% и 90% защиту соответственно от последующего заражения 31,48 . Аналогичным образом, в эндемических условиях было обнаружено, что более 90% пациентов с тяжелым заболеванием, вызванным инфекцией классическим биотипом, были защищены от инфекции в будущем, на основании наблюдаемых и ожидаемых показателей госпитализации в связи со вторым эпизодом холеры в США. это население 33 ; аналогичные результаты были получены в отдельном исследовании 49 .Механизм этого защитного иммунитета против инфекции и болезни V. cholerae неизвестен.

Ящик 1 | Иммунный ответ человека на

Vibrio cholerae

Врожденный ответ

Холера считается прототипом невоспалительной инфекции. Часто отсутствуют грубые изменения слизистой оболочки кишечника или архитектурной целостности тонкой кишки. Однако наблюдается повышенная регуляция провоспалительных цитокинов (включая интерлейкин-1β и фактор некроза опухоли), экспрессии различных бактерицидных белков и миграции нейтрофилов в собственную пластинку во время острой холеры.Естественная вариабельность врожденного иммунного ответа может влиять на восприимчивость, что подтверждается открытием, что полиморфизм в промоторной области гена LPLUNC1 (белок 1, связанный с карциномой длинного неба, легких и носового эпителия) связан с повышенным риском холеры.

Адаптивный ответ

Как адаптивный иммунный ответ на холеру обеспечивает защиту от последующего заболевания, неизвестно. Поскольку Vibrio cholerae неинвазивен, было высказано предположение, что секреторный иммуноглобулин А кишечника (sIgA) защищает от колонизации слизистой оболочки.Примерно через 8 дней после начала холеры наблюдается пик циркуляции антиген-специфических лимфоцитов V. cholerae , которые экспрессируют хемокиновые рецепторы кишечника (см. Рисунок) 112 . Эти лимфоциты вскоре становятся необнаруживаемыми в крови, поскольку они возвращаются на слизистую оболочку кишечника, где они приводят к увеличению секреции sIgA в кишечнике. Реакции сывороточных антител, такие как реакция вибриоцидных антител, также достигают максимума через 1-3 недели после заражения. Хотя высокие сывороточные титры вибриоцидных антител и IgA, специфичного к холерному токсину, коррелируют с защитой от инфекции, эти антитела снижаются до исходного уровня через год после заражения, задолго до того, как защитный иммунитет к холере ослабевает.Точно так же у добровольцев, инфицированных V. cholerae , уровни sIgA слизистой оболочки снижаются до исходного уровня в течение нескольких месяцев. Однако, когда добровольцев, у которых больше нет определяемых антител, повторно провоцируют антигенов V. cholerae , они демонстрируют стойкую способность вызывать анамнестический иммунный ответ, развивая пиковую кишечную секрецию антител так же быстро, как в течение трех дней. Следовательно, возможно, что скорость анамнестического ответа на повторное воздействие, а не заранее сформированные антитела, может опосредовать защиту от холеры.Это подтверждается недавними данными о том, что холера вызывает ответ В-клеток памяти, который выявляется в течение по крайней мере 1 года после заражения холерой 113 .

Выявлено несколько коррелятов иммунитета. Лучше всего охарактеризованным серологическим маркером иммунитета является титр сывороточных вибриоцидных антител. Это антитело является комплемент-зависимым бактерицидным антителом, титр которого заметно увеличивается после заболевания, но снижается до исходного уровня через 6–9 месяцев 7 . В Бангладеш вибриоцидные антитела обнаруживаются у большинства людей в возрасте 10–15 лет и связаны со снижением риска инфицирования.Поскольку V. cholerae является неинвазивным патогеном, эти сывороточные антитела могут не вносить непосредственный вклад в защиту на уровне слизистой оболочки кишечника, но они могут быть полезны для оценки степени защитного иммунитета на уровне популяции. Антитела иммуноглобулина A, специфичные к TCP, LPS или субъединице B холерного токсина, коррелируют с защитой от последующей инфекции и болезни 35 .

Полевые испытания вакцины обеспечивают контролируемую оценку устойчивости адаптивных иммунных ответов к В.холера . В крупнейшем контролируемом исследовании 62 285 участников в Бангладеш были рандомизированы для получения 3 пероральных доз (с интервалом в 6 недель) комбинации убитых целых клеток (Эль Тор и классические) плюс субъединица B холерного токсина (вакцина B – WC), цельноклеточный компонент без B-субъединицы (вакцина WC) или убитый Escherichia coli K12 в качестве контроля. Через 3 года наблюдения две вакцины (B – WC и WC) имели 50% и 52% защитную эффективность, соответственно 50 . Для детей младше 5 лет эффективность составила 23–26%.Через 6 месяцев наблюдения вакцина B – WC дала 85% защиту. 51 . Ведутся споры о том, демонстрируют ли эти данные эффективность, достаточную для широкомасштабного распространения. В настоящее время предпринимаются усилия по созданию новых вакцин для обеспечения более высоких и устойчивых ответов у реципиентов, а также для снижения производственных затрат с целью преодоления как иммунологических, так и производственных препятствий, которые ограничивают применимость существующих вакцин против холеры. 52–55 .

Роль, которую коллективный иммунитет играет в замедлении передачи холеры, недавно стала оценена.При испытаниях эффективности вакцины отдельные пациенты рандомизируются, чтобы гарантировать, что защитная эффективность отражает только прямой эффект вакцины 56 . Это означает, что при лицензировании вакцин не учитываются их преимущества на уровне населения. Обсуждаемое выше испытание вакцины B – WC имело уровень охвата от 4% до 65% в разных регионах 50,57 . Когда уровни заболеваемости холерой сравнивались с показателями охвата вакцинацией в конкретных регионах, было обнаружено, что заболеваемость среди реципиентов плацебо обратно коррелировала с уровнем охвата прививками 57 : там, где охват был высоким, даже среди тех, кто этого не сделал. Получившие вакцину, вероятность заболеть холерой по-прежнему на четверть ниже, чем у невакцинированных лиц в районах с низким охватом.Когда коллективный иммунитет включен в имитационные модели эффективности вакцины, охват вакцинацией B – WC 50% в эндемичных районах приводит к снижению общего числа случаев на 93%. 58 . Взятые вместе, эти исследования доказывают, что вакцина B-WC может обеспечить достаточную защиту для широкомасштабной вакцинации в эндемичных регионах и что коллективный иммунитет, вероятно, будет играть важную роль в ограничении передачи холеры.

Передача с точки зрения хозяина

Несколько групп создали математические модели, использующие перспективы как хозяина, так и патогена, чтобы помочь объяснить и предсказать природу вспышек холеры.Цель большинства этих моделей — точно отразить резкий рост и снижение заболеваемости холерой, которое наблюдается два раза в год в регионах вокруг Бенгальского залива. Модель была построена для включения показателей передачи, фактора сезонных колебаний и расчета количества восприимчивых людей на основе различного защитного иммунитета от прошлой инфекции. 59–61 . Эти идеи были основаны на проверке гипотез о том, что высокое соотношение бессимптомных и симптоматических случаев связано с разрешением вспышки и что короткий интервал защитного иммунитета (2–12 недель) после заражения допускает последующие вспышки, которые наблюдаются в Бангладеш 62 .Результаты показывают, что сочетание многих бессимптомных случаев и недолговечного иммунитета, а не молчаливых шеддеров , дает модель, которая лучше всего отражает эпидемиологические данные из Западной Бенгалии. У модели есть ограничения: она предполагает соотношение бессимптомных и симптоматических случаев, которое намного выше, чем наблюдаемое в последние годы, и она была протестирована с использованием показателей смертности, которые связаны с клинически определенной холерой из Западной Бенгалии между 1891 и 1940 годами — эпохой до открытия. ротавирусной и энтеротоксигенной E.coli , которые являются смешивающими факторами. Несмотря на свои недостатки, эти модели улучшают наше понимание сложной динамики вспышек и показывают, насколько мощной может быть реакция хозяина в ограничении передачи. Новые модели передачи холеры должны по-прежнему включать факторы сезонных колебаний, соотношение бессимптомных и симптоматических случаев и темпы снижения защитного иммунитета.

Возбудитель

Инфекционные дозы в моделях на животных

Инфекция человека-хозяина представляет собой многоступенчатый процесс: V.cholerae необходимо принимать внутрь в дозе, достаточной для преодоления врожденной иммунной защиты, затем экспрессии факторов вирулентности для колонизации тонкой кишки и, наконец, для координации выхода из организма хозяина для облегчения передачи 63 (). Модели холеры на животных в значительной степени являются показателями успешности первых двух стадий 64 . Используя модель инфекции у новорожденных мышей, было показано, что V. cholerae , которые выделяются с рисовым водяным стулом человека, находятся в гиперинфекционном состоянии, демонстрируя ID 50 из 10–100 клеток по сравнению с примерно 500 клетками для В.cholerae , выращенный in vitro 65–67 . Гиперинфекция также была задокументирована у Citrobacter rodentium 68 , а гиперинфекционный V. cholerae может быть воспроизведен при прохождении через мышиную модель инфекции 68,69 . Определение и фенотип гиперинфективности противоречивы из-за сложностей при выборе наиболее подходящих условий культивирования для роста контрольного штамма.

Жизненный цикл патогенного Vibrio cholerae

Токсигенные штаммы Vibrio cholerae сохраняются в водной среде вместе с нетоксигенными штаммами, чему способствует образование биопленок на биологических поверхностях и использование хитина в качестве источника углерода и азота.При попадании этих адаптированных к водной среде бактерий в загрязненную пищу или воду токсигенные штаммы колонизируют тонкий кишечник, размножаются, выделяют токсин холеры и возвращаются в окружающую среду хозяином при секреторной диарее. Патогенные микроорганизмы, выделяемые калом, находятся в преходящем гиперинфекционном состоянии, которое способствует усилению вспышки за счет передачи последующим хозяевам.

Молекулярные механизмы, которые способствуют гиперинфективности у V. cholerae , многофакторны.Исследования на микроматрицах показали, что глобальный профиль транскрипции гиперинфекционных V. cholerae из рисового водяного стула отличается от такового у V. cholerae , выращенных in vitro или верхних отделов тонкой кишки V. cholerae , выведенных в рвотных массах 65, 70,71 (). Большинство известных генов вирулентности, включая гены холерного токсина и TCP, подавляются в стуле из рисовой воды, но механизм этого подавления остается неизвестным. Еще одна уникальная особенность — подавление генов хемотаксиса, что удивительно, учитывая, что планктонные вибрионы, выделяемые пациентами, являются жгутиками и очень подвижны.Было показано, что это подавление хемотаксиса является одним из компонентов гиперинфективности, потому что подвижные, но не хемотаксирующие мутанты V. cholerae являются гиперинфекционными 66,72,73 .

Паттерны экспрессии гена Vibrio cholerae на разных стадиях жизненного цикла

При проглатывании (нижняя правая панель) Vibrio cholerae использует подвижность и муциназы для проникновения через слизистый гель и N -ацетилглюкозамин-связывающий белок A ( GbpA) и другие факторы колонизации эпителия тонкой кишки.Существенные изменения в экспрессии генов сопровождают этот переход от пруда к острой инфекции, включая, помимо прочего, индукцию vieA, которая кодирует фосфодиэстеразу, гидролизующую вторичный мессенджер циклический ди-GMP, и гены, регулируемые ToxR, включая гены холерного токсина и самоагрегирующиеся пилусы, регулируемые токсинами (TCP). Кроме того, репрессируются несколько генов, например, гены хитин-связывающего маннозу-чувствительного гемагглютинина пилуса (MSHA) и стрессового сигма-фактора RpoS.На поздней стадии инфекции (нижняя левая панель) V. cholerae снова изменяет экспрессию своего гена, чтобы отделиться от эпителия — «реакция бегства» — и подготовиться к передаче другому хозяину (например, распространение в домашних условиях). ) или попадание в водную среду. Изменения на поздних стадиях включают индукцию генов синтеза c-di-GMP (дигуанилилциклазы), систем поглощения питательных веществ (таких как регулон регуляции поглощения железа (Fur)) и подвижности (Fla), а также репрессию таких генов, как для хемотаксиса (Che) и регулона ToxR.Возникающее в результате состояние «подвижное, но не хемотаксическое» способствует гиперинфективности. Если бактерии, выделяющиеся со стулом, не попадают в организм другого хозяина в течение короткого периода времени, то их ждет одна из двух судьб (верхняя панель): укоренение в водной среде путем нахождения подходящих источников питательных веществ, таких как хитин, или распад в « активную среду ». но некультивируемое состояние. При воздействии хитина V. cholerae индуцирует несколько генов, участвующих в присоединении и катаболизме хитина (регулон ChiS), а также гены, участвующие в генетической компетентности (регулон TfoX).Образование биопленок на поверхности опосредуется индукцией регулона Vps, который кодирует внеклеточный полисахарид. Во время перехода в активное, но не культивируемое состояние, происходят большие изменения в экспрессии генов, поскольку V. cholerae пытается адаптироваться к условиям с низким содержанием питательных веществ. К ним относятся индукция генов фосфатного и азотного голодания (phoB и glnB-1 соответственно) и репрессия генов трансляционного аппарата.

Транскриптом V. cholerae , пассированный от животных, также уникален и был выявлен в двух недавних исследованиях.Во-первых, существует скоординированная «реакция бегства», которая позволяет организму отделяться от ворсинок кишечника, готовясь к выходу из организма хозяина; это регулируется стрессом и стационарной фазой сигма-фактора РНК-полимеразы RpoS 74 . Во-вторых, на более поздних стадиях заражения животных, V. cholerae активирует экспрессию генов, которые не требуются для инфекции, но важны для выживания при переходе в водную среду 75 . Эта предварительная индукция генов выживания в окружающей среде на поздних этапах инфекции может подготовить организм к жесткому селективному давлению в воде пруда, облегчая передачу 24,65 .В большинстве описанных выше исследований бактериальные клетки, составлявшие инфекционную дозу, были планктонными клетками, а не агрегатами. Было проведено одно исследование с участием добровольцев, в котором добровольцам вводили V. cholerae в морщинистой форме (то есть агрегатной и продуцирующей экзополисахариды); Инфекционная доза была аналогична дозе, наблюдаемой для планктонных форм, а морщинистые формы выделялись добровольцами 76 . Кроме того, люди выделяют V. cholerae в виде сложных биопленко-подобных агрегатов 67,77,78 .Идентификатор ID 50 V. cholerae выделяется в совокупности, и роль, которую эти совокупности играют в передаче, еще предстоит определить.

Инфекционная доза у людей

Инфекционная доза V. cholerae у людей сильно варьируется в зависимости от бактериального штамма и хозяина. Дозы 10 8 –10 11 клеток требовались для обеспечения последовательной колонизации у здоровых добровольцев из Северной Америки 7,29,31 . Инфекционная доза снижается до 10 4 –10 8 при использовании бикарбонатного буфера для нейтрализации желудочной кислоты незадолго до инокуляции; этот метод дает 90% заражений 7,29,31 .В домашнем хозяйстве пища может действовать как кислотный буфер; В исследованиях на добровольцах введение бактерии как часть «еды» из риса, рыбы, заварного крема и обезжиренного молока дало результаты, сравнимые с результатами, наблюдаемыми при одновременном введении бактерий и бикарбоната 79 . В эндемичных условиях инфекционная доза неизвестна. Подсчет V. cholerae в образцах домашнего хозяйства и окружающей среды исторически сложен, требует быстрого реагирования и использования флуоресцентной микроскопии для подсчета тех бактерий, культивирование которых может оказаться затруднительным. 80 .

Клиническое наблюдение, что буферная кислота желудочного сока снижает инфекционную дозу, предполагает, что бактериальные гены, участвующие в кислотной устойчивости, могут способствовать вирулентности. Сигнатурный мутагенез (STM) был использован для поиска подмножества генов вирулентности, которые вносят вклад в кислотостойкость in vitro 81 . Удаление этих генов ослабило V. cholerae в модели инфекции у новорожденных мышей, что подтверждает их роль в вирулентности. Кроме того, обнажая В. дикого типа.cholerae к кислоте непосредственно перед инокуляцией мышей давало большое конкурентное преимущество перед неадаптированными к кислоте бактериями 82 . Эти данные, наряду с другими, демонстрируют, что бактерии, выращенные in vitro , могут стать более заразными в результате воздействия стресса. Кроме того, эти результаты могут иметь клиническое значение в тех регионах мира, где распространено пониженное производство кислоты в желудке (ахлоргидрия), вторичное по отношению к инфекции Helicobacter pylori, например, Бангладеш 7 .

Передача с точки зрения патогена

Роль, которую гиперинфекция играет в быстром распространении холеры среди населения в начале вспышки, остается непроверенной. V. cholerae остается гиперинфекционным в течение как минимум 5 часов после попадания от пациентов в водную среду, что позволяет предположить, что гиперинфекция играет особую роль в передаче инфекции в районах с высокой плотностью населения, где существует вероятность контакта с организмом другого человека. в относительно короткие сроки 65,70 .Одна модель передачи холеры предполагает, что вспышка начинается, когда либо уже инфицированный индексный случай мигрирует и загрязняет новую территорию, либо V. cholerae , потребляемая из естественного водоема окружающей среды, создает новый индексный случай у постоянного населения. В обоих сценариях не исключено, что ускорение вспышки является результатом быстрого распространения гиперинфекционного вируса V. cholerae от человека к человеку при кратковременном нахождении в окружающей среде.Модели передачи, которые допускают только случайное попадание V. cholerae в окружающую среду, не предсказывают резкого роста числа случаев, которые наблюдаются в начале вспышек по всему миру, включая те, которые происходят раз в два года в Бангладеш 11 . Однако модели, которые включают гиперинфекцию 83 , лучше отражают этот резкий подъем.

Поддержание передачи через водоемы

Эндемичная холера встречается в регионах с естественными водными резервуарами токсигенных и нетоксигенных V.cholerae , где бактерии могут сохраняться либо в свободноживущем состоянии, либо в ассоциации с фитопланктоном 84–86 , зоопланктоном 85–88 или биотическим и абиотическим детритом 89,90 . Эти взаимодействия могут быть как полезными, так и антагонистическими. 91,92 . Ассоциации вообще не случайны. Например, V. cholerae развил механизмы для присоединения, разложения и использования хитина в качестве источника углерода и азота 93–95 ().Для экологических изолятов методы ДНК-типирования, основанные на секвенировании гипервариабельных локусов повторов короткой последовательности, начали лучше определять взаимосвязь между нетоксигенными и токсигенными V. cholerae . Было обнаружено, что два сельских региона, разделенных 80 км в дельте реки Ганг, содержат отдельные, разнообразные штаммы из экологических и клинических условий 96 . Изоляты из окружающей среды состояли как из токсигенных, так и из нетоксигенных штаммов O1 El Tor и O139 на фоне нетоксигенных штаммов, представляющих многие серогруппы.Напротив, клинические изоляты были строго токсигенными O1 El Tor и O139, но относились к разным типам штаммов. Эти результаты демонстрируют, что в организме хозяина токсигенные штаммы обладают селективным преимуществом перед нетоксигенными штаммами из окружающей среды. Взаимосвязь между экологическими и клиническими штаммами может быть разной в других регионах мира и, вероятно, будет варьироваться в зависимости от окружающей среды, санитарии, инфраструктуры и плотности населения.

Селективное давление в водной среде

Некоторые бактериальные патогены, в том числе V.cholerae , теряют способность культивироваться на стандартных средах после переноса от хозяина или лаборатории в водную среду 24,97 . Этот фенотип традиционно известен как «жизнеспособное, но не культивируемое» (VBNC) состояние, поскольку клетки сохраняют способность к основным метаболическим процессам, таким как синтез белка, дыхание и поддержание целостности мембран, несмотря на их неспособность культивироваться 24 . Альтернативный, более консервативный термин, который применяется к этому состоянию, — «активный, но не культивируемый» (ABNC), поскольку остается неясным, живы ли еще бактерии, утратившие культивирование на стандартных средах 98 .

V. cholerae может быстро превратиться в ABNC, когда покидает человека-хозяина и попадает в водную среду. Исследования с участием V. cholerae , полученных от пациента и in vitro , которые подвергались диализу в прудовой воде, продемонстрировали снижение культивирования на 60% и 90% через 5 часов и 24 часа, соответственно, 65 . Анализ микроматрицы продемонстрировал быстрые и поразительные изменения транскрипции, когда бактерии входили в состояние ABNC 65 . Эти изменения включали индукцию генов поглощения фосфатов и фиксированного азота и подавление генов синтеза белка и энергетического метаболизма, что согласуется с низкими уровнями источников углерода, фосфатов и фиксированного азота, которые часто встречаются в водной среде.Остается проверить, будет ли включение твердых частиц, которые были отфильтрованы из воды пруда в вышеупомянутом исследовании, продлить культивирование V. cholerae . Учитывая возможность такого быстрого снижения культивируемости, исследователи задали вопрос, является ли большинство из клеток V. cholerae , заражающих людей из окружающей среды, ABNC или культивируемыми клетками. Одна из гипотез гласит, что если культивируемые клетки более заразны, чем клетки ABNC, то ID 50 , рассчитанный по общему количеству клеток, будет увеличиваться по мере уменьшения процента культивируемых клеток в популяции.Это было подтверждено в недавних экспериментах, предполагающих, что основными виновниками инфицирования человека, вероятно, являются культивируемые клеток V. cholerae 65 . В будущих математических моделях передачи V. cholerae должна быть учтена возможность уменьшения скорости культивирования.

V. cholerae литический бактериофаг

Биология вибриофагов

Восемьдесят лет назад было высказано предположение, что бактериофаги могут контролировать естественные популяции патогенов 99,100 .Более поздние исследования в области морской микробиологии выявили элегантный баланс между бактериофагами и их цианобактериальной добычей 101 . С клинической точки зрения бактериофаги в принципе могут использоваться для профилактики или лечения инфекций. Действительно, документально подтверждена «фаговая терапия» против холеры и других заболеваний (ВСТАВКА 2). Существует не менее 200 видов бактериофагов, которые инфицируют V. cholerae , известных как вибриофаги 102,103 . Нитевидный лизогенный вибриофаг CTXΦ является одним из наиболее охарактеризованных, поскольку он несет гены, кодирующие токсин холеры 22 .Первым секвенированным геномом хвостатого вибриофага был геном κ139; этот вибриофаг может быть как лизогенным, так и литическим. Основным механизмом, с помощью которого V. cholerae O1 становится устойчивым к κ139 и многим другим вибриофагам, является мутация кластера генов rfb , который кодирует ферменты для синтеза LPS 104 . В отсутствие рецептора антигена LPS O вибриофаг не может связываться или инфицировать бактериальную клетку. Все rfb -нулевые мутанты V. cholerae O1, которые были протестированы на сегодняшний день, аттенуированы 65,67,105 .

Ящик 2 | Исследование бактериофагов

В 1915–1917 годах Twort 114 и d’Hérelle 115 независимо друг от друга открыли бактериофаги. Д’Эрелль определил, что бактериальная инфекция на животных моделях может быть ослаблена бактериофагами, и в 1925 году состояние пациентов с бубонной чумой улучшилось после того, как д’Эрелль ввел бактериофаги непосредственно в их бубоны (увеличенные лимфатические узлы). 116 . Эти открытия привели к исследованию бактериофагов, в задачу которого входило изучение терапии бактериофагами холеры в Индии 116 .В их первом испытании терапии сравнивали 244 нелеченных пациента с холерой и 219 пациентов с холерой, которых лечили вибриофагами; в нелеченой группе смертность составила 20%, тогда как в обработанной группе — 6,8% (χ 2 , p <0,01). Другие исследования показали аналогичные результаты 5,116,117 . Несмотря на некоторые ограничения, характерные для той эпохи, расследование добилось достаточного успеха, чтобы расширить свои усилия. 5 .

За 1928, 1929 и 1934 годы, всего 36 000, 130 823 и 871 316 доз вибриофагов были подготовлены и распространены сотрудниками по расследованию в то время, когда начались вспышки в конкретных исследуемых сообществах в Индии 116 .Вибриофаги также распространялись в общественных источниках питьевой воды для профилактики. Смертность от холеры сравнивалась с контрольными сообществами до и после вмешательств. Трехлетний уровень смертности от холеры снизился с 30 до 2 на 10 000 в регионах, которые лечились вибриофагами 117 . Хотя эти исследования имели несколько ограничений, они предоставляют единственные доступные данные об эффективности терапии вибриофагами. Достижения в области регидратации и антибиотикотерапии в 1930-х и 1940-х годах сделали испытания бактериофагов, основанные на конечных точках смертности, неэтичными и статистически сложными 116,118 .

Вибриофаги в окружающей среде

В 1930-х годах было обнаружено, что случаи холеры положительно коррелировали с изоляцией вибриофагов в водной среде 106 . В наше время была описана отсроченная положительная согласованность между ростом числа случаев холеры и последующим ростом вибриофагов в окружающей среде. 107 . Модель, разработанная Jensen et al. предсказывает, что если вспышка будет инициирована увеличением В.cholerae в окружающей среде, плотность вибриофагов впоследствии будет увеличиваться, что в конечном итоге будет способствовать сокращению вспышки 108 . В Международном центре исследований диарейных заболеваний в Бангладеш (ICDDRB) рост случаев холеры был связан с согласованным, но отсроченным увеличением доли больных холерой с вибриофагами в стуле 109 . Вибриофаги, идентифицированные в этом исследовании, были литическими вибриофагами (JSF4), хотя у пациентов можно выделить несколько типов вибриофагов 107 .Титры вибриофагов в стуле из рисовой воды варьировались от 10 2 до 10 8 бляшкообразующих единиц на миллилитр, что согласуется с другими публикациями 65,67 . Несмотря на присутствие литических вибриофагов, все стула были положительными на V. cholerae и V. cholerae , как правило, по количеству вибриофагов, по крайней мере, на порядок. Последующие исследования показали, что большинство бактериальных изолятов из стула все еще чувствительны к вибриофагам 65,67 .Пока неясно, почему вибриофаги в кишечнике человека не могут избавиться от инфекции V. cholerae , но эта «неудача» может играть важную роль в распространении клональной экспансии фагов во время вспышек. 109 .

Передача с точки зрения вибриофага

Современные эксперименты начали проверять гипотезу о том, что фаги могут ослаблять бактериальную передачу. Например, тесты подвижности с использованием микроскопии в темном поле были использованы для быстрого скрининга стула из рисовой воды на наличие вибриофагов; стул, который был отрицательным в темном поле (не содержал подвижных вибрионов), с большей вероятностью содержал литические вибриофаги и имел низкое количество культивируемых клеток, но схожее общее количество клеток 77 .С помощью этого косвенного измерения для фагов было обнаружено, что по крайней мере половина пациентов с холерой, которые наблюдались в течение 5-летнего периода в ICDDRB, содержали вибриофаги, а домашние контакты пациентов с положительным индексом вибриофагов имели меньшую вероятность инфицирования. с V. cholerae , чем люди, которые контактировали с пациентом, который не был фагоположительным 77 . Эти результаты согласуются с выводом о десятикратном снижении инфекционной дозы В.cholerae , когда в стуле хозяина есть вибриофаги 67 .

V. cholerae обычно превосходит литические бактериофаги сразу после пассажа от хозяина 65 , 67 . В лабораторных экспериментах с использованием стула из рисовой воды, выращенного человеком, бактериофаги имеют начальный всплеск репликации в течение первых нескольких часов в водной среде и могут достигать отношения бактериофагов к бактериям примерно 1: 1 за 24 часа 65,67 .Хотя гиперинфекция может сохраняться в течение нескольких часов после пассажа от хозяина 65,70 , потеря культивирования (обсуждалось выше) и расцвет бактериофагов в водной среде, вероятно, объединяются, чтобы блокировать передачу 65 . Контрольные эксперименты с , полученным in vitro , V. cholerae и бактериофагами подтверждают, что бактериофаги могут ограничивать бремя инфекции 65,67 . Однако бактериофаги никогда не могут полностью блокировать инфекцию, поскольку мутанты V.cholerae , у которых отсутствует зрелый LPS, избегают хищничества и колонизируют мышей, хотя и в меньшем количестве. Как уже упоминалось, мутанты LPS ослаблены и могут быть потеряны в естественном жизненном цикле V. cholerae 65,67,105 .

Таким образом, динамическое взаимодействие между бактериофагом и бактерией в воде пруда предполагает, что модель передачи холеры должна включать в себя меру быстрого снижения способности бактерий к культивированию и уничтожения бактериофагами. В закрытой экспериментальной системе передача В.cholerae можно свести к минимуму, если эти два фактора сочетаются в водной среде. Следовательно, вероятно, будет преимущество пригодности для V. cholerae , которое быстро передается следующему хозяину, когда культивируемость все еще высока, а концентрация бактериофагов все еще низкая. В этом обзоре упоминалось несколько моделей, которые предлагают разные объяснения роста и спада вспышек с точки зрения хозяина (клинический спектр и коллективный иммунитет), бактерии (гиперинфекция) и бактериофага (хищничество).Мы объединили несколько опубликованных моделей в одну рабочую диаграмму, чтобы побудить задуматься о том, как эти факторы могут взаимодействовать в естественной среде (). Лучшее понимание того, как функционирует интегрированная модель, может раскрыть возможности для вмешательств в области общественного здравоохранения.

Комбинированная модель передачи холеры с точки зрения хозяина и микроорганизмов

Общая популяция (H) питает пул восприимчивых хозяев (S), которые становятся инфекционными (I) после употребления Vibrio cholerae из окружающей среды. источник, с литическими бактериофагами или без них (Φ).Инфицированные люди имеют симптомы (I symp ) или бессимптомны (I asymp ) и выздоравливают (R) благодаря действиям своей иммунной системы и, возможно, литических бактериофагов, или погибают от инфекции (m). Выздоровевшие люди будут повторно попадать в пул восприимчивых с разной скоростью (//) в зависимости от степени защитного иммунитета. Литические фаги и гиперинфекционные V. cholerae (VC Hi ) выделяются симптоматическим хозяином в различных концентрациях; бессимптомные хозяева выделяют гораздо меньше бактерий (пунктирная линия).Клетки VC Hi быстро переходят к следующему хозяину, сохраняются в окружающей среде в виде культивируемых клеток с неизвестной инфекционностью (VC C ) или распадаются в «активное, но не культивируемое» состояние (VC ABNC ) с пониженной инфекционностью. Все три типа клеток плюс совокупные бактерии (не показаны), вероятно, играют смешанную роль в качестве резервуаров окружающей среды для будущих вспышек.

Заключительные замечания

Модель передачи, которая точно предсказывает масштабы возникающей вспышки, предоставит органам общественного здравоохранения полезную информацию для соответствующего масштабирования их ответных мер.Вмешательства, нацеленные на жизненно важные этапы передачи, могут быть эффективными для предотвращения вспышек. Иммунитет хозяина, гиперинфекция патогенов и фаги — все это факторы, которые можно использовать для борьбы со вспышкой. Например, централизованные центры управления отходами часто терпят неудачу в условиях нехватки ресурсов. Поскольку пациенты с симптомами выделяют более V. cholerae , а V. cholerae в стуле из рисовой воды является гиперинфекционным, вспышки холеры лучше всего остановить у источника, уменьшив воздействие на человека свежевыпущенного гиперинфекционного стула.Другими словами, при сохранении централизованного управления следует поощрять и проверять децентрализованные усилия по целевому управлению отходами в единице домашнего хозяйства. Эта концепция подчеркивает решающую важность уже проверенных, но простых мероприятий в домашних условиях, таких как использование кувшинов с узким горлышком, хлорирование хранящейся воды и мытье рук, для профилактики заболеваний. 110,111 .

Еще многое предстоит узнать об эффективности вакцины в естественных условиях холеры.Отказ от традиционных мер оценки эффективности вакцин путем включения преимуществ коллективного иммунитета продолжит раскрывать истинное влияние как существующих вакцин, так и вакцин, находящихся в разработке. Кроме того, понимание воздействия хищничества бактериофагов и того, как вакцины снижают пул восприимчивости до такой степени, что передача не может продолжаться, являются важными областями для будущих исследований. Ответы на многие вопросы, поставленные в этом обзоре, имеют решающее значение для стран с ограниченными ресурсами, таких как Зимбабве, для оптимизации использования ограниченных запасов вакцины и борьбы с пагубными последствиями неудовлетворительной санитарии.

Холера

Холера — это острая диарейная инфекция, вызванная приемом пищи или воды, зараженной бактерией Vibrio cholerae . Холера остается глобальной угрозой общественному здоровью и показателем неравенства и отсутствия социального развития. По оценкам исследователей, ежегодно в мире регистрируется от 1,3 до 4,0 миллионов случаев холеры и от 21 000 до 143 000 смертей от холеры (1) .

Симптомы

Холера — чрезвычайно опасное заболевание, которое может вызывать тяжелую острую водянистую диарею.Симптомы после употребления зараженной пищи или воды проявляются от 12 часов до 5 дней. (2) . Холера поражает как детей, так и взрослых и может убить в течение нескольких часов, если ее не лечить.

У большинства людей, инфицированных V. cholerae , не развиваются какие-либо симптомы, хотя бактерии присутствуют в их фекалиях в течение 1-10 дней после заражения и распространяются обратно в окружающую среду, потенциально заражая других людей.

Среди людей, у которых развиваются симптомы, у большинства наблюдаются легкие или умеренные симптомы, в то время как у меньшинства развивается острая водянистая диарея с тяжелым обезвоживанием.Если не лечить, это может привести к смерти.

История

В 19 веке холера распространилась по миру из своего первоначального резервуара в дельте Ганга в Индии. Шесть последующих пандемий унесли жизни миллионы людей на всех континентах. Текущая (седьмая) пандемия началась в Южной Азии в 1961 году, достигла Африки в 1971 году и Америки в 1991 году. В настоящее время холера является эндемическим заболеванием во многих странах.

Vibrio cholerae штаммов

Существует много серогрупп V.cholerae , но только два — O1 и O139 — вызывают вспышки. V. cholerae O1 вызвал все недавние вспышки. V. cholerae O139, впервые выявленный в Бангладеш в 1992 г., в прошлом вызывал вспышки, но в последнее время выявлялся только в единичных случаях. За пределами Азии он никогда не обнаруживался. Нет никакой разницы в заболевании, вызванном двумя серогруппами.

Эпидемиология, факторы риска и бремя болезней

Холера может носить эндемический или эпидемический характер.Эндемичный по холере район — это район, где подтвержденные случаи холеры были выявлены в течение последних 3 лет с доказательствами местной передачи (это означает, что случаи не завезены из других мест). Вспышка / эпидемия холеры может произойти как в эндемичных странах, так и в странах, где холера встречается нерегулярно.

В странах, эндемичных по холере, вспышка может быть сезонной или спорадической и представляет собой большее, чем ожидалось, число случаев. В стране, где холера не возникает регулярно, вспышка определяется как минимум 1 подтвержденным случаем холеры с доказательствами местной передачи в районе, где холера обычно не встречается.

Передача холеры тесно связана с недостаточным доступом к чистой воде и средствам санитарии. Типичными зонами риска являются пригородные трущобы и лагеря для внутренне перемещенных лиц или беженцев, где не соблюдаются минимальные требования к чистой воде и санитарии.

Последствия гуманитарного кризиса, такие как нарушение систем водоснабжения и санитарии или перемещение населения в неадекватные и переполненные лагеря, могут повысить риск передачи холеры, если бактерии присутствуют или заносятся.Незараженные трупы никогда не упоминались как источник эпидемий.

Число случаев холеры, зарегистрированных в ВОЗ, оставалось высоким в течение последних нескольких лет. В течение 2019 г. было зарегистрировано 923 037 случаев заболевания, 1911 летальных исходов из 31 страны (3) . Расхождение между этими цифрами и предполагаемым бременем болезни объясняется тем, что многие случаи не регистрируются из-за ограничений в системах эпиднадзора и опасений воздействия на торговлю и туризм.

Профилактика и борьба

Многогранный подход — ключ к борьбе с холерой и снижению смертности.Используются сочетание эпиднадзора, водоснабжения, санитарии и гигиены, социальной мобилизации, лечения и пероральных вакцин против холеры.

Эпиднадзор

Эпиднадзор за холерой должен быть частью интегрированной системы эпиднадзора за болезнями, которая включает обратную связь на местном уровне и обмен информацией на глобальном уровне.

Случаи холеры выявляются на основании клинического подозрения у пациентов с тяжелой острой водянистой диареей. Подозрение затем подтверждается идентификацией В.cholerae в образцах стула больных. Обнаружение может быть облегчено с помощью быстрых диагностических тестов (RDT), когда один или несколько положительных образцов вызывают предупреждение о холере. Образцы отправляются в лабораторию для подтверждения посевом или ПЦР. Местный потенциал для выявления (диагностики) и мониторинга (сбора, компиляции и анализа данных) случаев холеры является центральным элементом эффективной системы эпиднадзора и планирования мер борьбы.

Странам, затронутым холерой, рекомендуется усилить эпиднадзор за болезнями и национальную готовность к быстрому обнаружению вспышек и реагированию на них.В соответствии с Международными медико-санитарными правилами уведомление обо всех случаях холеры больше не является обязательным. Однако события в области общественного здравоохранения, связанные с холерой, всегда должны оцениваться по критериям, предусмотренным в нормативных актах, чтобы определить, есть ли необходимость в официальном уведомлении.

Мероприятия по водоснабжению и санитарии

Долгосрочное решение борьбы с холерой заключается в экономическом развитии и всеобщем доступе к безопасной питьевой воде и надлежащей санитарии. Действия, направленные на экологические условия, включают внедрение адаптированных долгосрочных устойчивых решений WASH для обеспечения использования безопасной воды, основных санитарных условий и надлежащей гигиены в очагах холеры.Помимо холеры, такие вмешательства предотвращают широкий спектр других заболеваний, передающихся через воду, а также способствуют достижению целей, связанных с бедностью, недоеданием и образованием. Решения WASH для лечения холеры согласованы с целями в области устойчивого развития (ЦУР 6).

Дополнительная информация о Приложении 2 ММСП

Лечение

Холера — это легко поддающееся лечению заболевание. Большинство людей можно успешно вылечить с помощью быстрого приема раствора для пероральной регидратации (ПРС).Стандартный пакетик ОРС ВОЗ / ЮНИСЕФ растворяют в 1 литре (л) чистой воды. Взрослым пациентам может потребоваться до 6 л ПРС для лечения умеренного обезвоживания в первый день.

Пациенты с тяжелым обезвоживанием подвержены риску шока и нуждаются в быстром введении внутривенных жидкостей. Этим пациентам также назначают соответствующие антибиотики для уменьшения продолжительности диареи, уменьшения объема необходимой жидкости для регидратации и сокращения количества и продолжительности выделения V. cholerae с калом.

Массовое применение антибиотиков не рекомендуется, так как не доказано, что оно влияет на распространение холеры и может способствовать развитию устойчивости к противомикробным препаратам.

Быстрый доступ к лечению важен во время вспышки холеры. Оральная регидратация должна быть доступна в общинах, в дополнение к более крупным лечебным центрам, которые могут обеспечить внутривенное введение жидкости и круглосуточный уход. При своевременном и правильном лечении уровень летальности не должен превышать 1%.

Цинк — важная дополнительная терапия для детей до 5 лет, которая также сокращает продолжительность диареи и может предотвратить будущие эпизоды других причин острой водянистой диареи.

Следует также поощрять грудное вскармливание.

Пропаганда гигиены и социальная мобилизация

Кампании по санитарному просвещению, адаптированные к местной культуре и верованиям, должны способствовать принятию соответствующих гигиенических практик, таких как мытье рук с мылом, безопасное приготовление и хранение продуктов питания и безопасное удаление фекалий детей . Порядок похорон умерших от холеры должен быть адаптирован для предотвращения заражения посетителей.

Кроме того, во время вспышек следует организовывать информационные кампании, а также предоставлять населению информацию о потенциальных рисках и симптомах холеры, мерах предосторожности, которые необходимо предпринять, чтобы избежать холеры, когда и где сообщать о случаях заболевания и немедленно обращаться за лечением при появлении симптомов. .Также следует сообщить о местонахождении подходящих участков лечения.

Участие в сообществе является ключом к долгосрочным изменениям в поведении и борьбе с холерой.

Оральные вакцины против холеры

В настоящее время существует три предварительно квалифицированных ВОЗ оральных вакцины против холеры (OCV): Dukoral®, Shanchol ™ и Euvichol-Plus®. Все три вакцины требуют двух доз для полной защиты.

Дукорал® вводится с буферным раствором, для которого взрослым требуется 150 мл чистой воды.Дукорал можно давать всем лицам старше 2 лет. Между каждой дозой должно быть минимум 7 дней и не более 6 недель. Детям в возрасте 2-5 лет требуется третья доза. Дукорал® в основном используется путешественниками. Две дозы Дукорала® обеспечивают защиту от холеры на 2 года.

Shanchol ™ и Euvichol-Plus® имеют одинаковую формулу вакцины, производимую двумя разными производителями. Для их введения не требуется буферный раствор. Они выдаются всем лицам старше одного года.Между каждой дозой этих двух вакцин должна быть как минимум двухнедельная задержка. Две дозы Shanchol ™ и Euvichol-Plus® обеспечивают защиту от холеры как минимум на три года, а одна доза обеспечивает краткосрочную защиту.

Shanchol ™ прошел предварительную квалификацию для использования в цепочке контролируемых температур, инновационном подходе к управлению вакцинами, позволяющем хранить вакцины при температурах за пределами традиционной холодовой цепи от + 2 ° C до + 8 ° C в течение ограниченного периода времени. в контролируемых и контролируемых условиях.

Более подробную информацию о цепочке контрольных температур можно найти здесь.

Shanchol ™ и Euvichol-Plus® — это вакцины, которые в настоящее время доступны для кампаний массовой вакцинации через Глобальный запас OCV. Запасы поддерживаются Гави, Альянсом вакцин.

На основании имеющихся данных в Позиционном документе ВОЗ по вакцинам против холеры от августа 2017 г. говорится, что:

  • OCV следует использовать в районах с эндемической холерой, в условиях гуманитарных кризисов с высоким риском холеры и во время вспышек холеры; всегда в сочетании с другими стратегиями профилактики холеры и борьбы с ней;
  • вакцинация не должна препятствовать осуществлению других высокоприоритетных медицинских вмешательств для контроля или предотвращения вспышек холеры.

Более 70 миллионов доз OCV было использовано в кампаниях массовой вакцинации. Кампании проводились в районах, где произошла вспышка болезни, в районах, подверженных повышенной уязвимости во время гуманитарных кризисов, и среди населения, проживающего в высокоэндемичных районах, известных как «горячие точки».

Ответные меры ВОЗ

В 2014 г. была активизирована Глобальная целевая группа по борьбе с холерой (GTFCC), секретариат которой находится в ВОЗ. GTFCC — это сеть из более чем 50 партнеров, активно занимающихся борьбой с холерой во всем мире, включая академические учреждения, неправительственные организации и учреждения Организации Объединенных Наций.

Посредством GTFCC и при поддержке доноров ВОЗ работает над тем, чтобы:

  • содействовать разработке и осуществлению глобальных стратегий для содействия развитию потенциала в области профилактики холеры и борьбы с ней во всем мире; №
  • обеспечивает форум для технического обмена, координации и сотрудничества по деятельности, связанной с холерой, с целью укрепления потенциала страны по профилактике холеры и борьбе с ней;
  • поддерживать страны в реализации эффективных стратегий борьбы с холерой и мониторинге прогресса;
  • распространять технические руководства и оперативные руководства;
  • поддержать разработку программы исследований с упором на оценку новаторских подходов к профилактике холеры и борьбе с ней в затронутых странах; и
  • повышают узнаваемость холеры как важной глобальной проблемы общественного здравоохранения посредством распространения информации о профилактике холеры и борьбе с ней, а также проведения информационно-пропагандистских мероприятий и мероприятий по мобилизации ресурсов для поддержки профилактики холеры и борьбы с ней на национальном, региональном и глобальном уровнях.

Ликвидация холеры: дорожная карта до 2030 года

В октябре 2017 года партнеры GTFCC запустили стратегию борьбы с холерой: глобальная дорожная карта до 2030 года. Стратегия, возглавляемая страной, направлена ​​на сокращение смертности от холеры на 90% и ликвидацию холеры в до 20 стран к 2030 году.

Глобальная дорожная карта фокусируется на трех стратегических направлениях:

  1. Раннее выявление и быстрое реагирование для сдерживания вспышек: стратегия фокусируется на сдерживании вспышек — где бы они ни происходили — посредством раннего выявления и быстрого многосекторального реагирования включая сообщество, участие, усиление эпиднадзора и лабораторного потенциала, системы здравоохранения и готовность поставок, а также поддержку групп быстрого реагирования.
  2. Целевой многосекторальный подход к предотвращению рецидивов холеры: стратегия призывает страны и партнеров сосредоточить внимание на «горячих точках» холеры — относительно небольших территориях, наиболее сильно пораженных холерой. Передачу холеры в этих районах можно остановить с помощью мер, включая улучшение WASH и использование OCV.
  3. Эффективный механизм координации технической поддержки, защиты, мобилизации ресурсов и партнерства на местном и глобальном уровнях: GTFCC обеспечивает прочную основу для поддержки стран в активизации усилий по борьбе с холерой, опираясь на межсекторальную борьбу с холерой под руководством страны. программ и поддерживая их человеческими, техническими и финансовыми ресурсами.

В мае 2018 г. на 71-й сессии Всемирной ассамблеи здравоохранения,

, на 71-й сессии Всемирной ассамблеи здравоохранения была принята резолюция, способствующая борьбе с холерой и поддерживающая документ «Прекращение холеры: глобальная дорожная карта до 2030 года»,

Подробнее о стратегии

Наборы для лечения холеры

Для обеспечения эффективного и действенного использования необходимых материалов для расследования и подтверждения вспышек холеры, а также для лечения больных холерой ВОЗ разработала набор наборов для лечения холеры.

В 2016 г., после консультации с партнерами-исполнителями, ВОЗ пересмотрела наборы для лечения холеры, чтобы они лучше отвечали потребностям на местах.Имеется 6 наборов:

  • 1 для исследования
  • 1 с расходными материалами для лабораторного подтверждения
  • 3 для лечения в каждом районе, на периферийном и центральном уровнях
  • 1 вспомогательный набор с материально-техническими материалами, включая солнечные лампы, ограждения и водные пузыри и краны.

В каждом лечебном наборе достаточно материала для лечения 100 пациентов. Пересмотренные наборы для лечения холеры разработаны, чтобы помочь подготовиться к потенциальной вспышке холеры и поддержать первый месяц первоначального реагирования.

Список литературы

(1) Обновленное глобальное бремя холеры в эндемичных странах.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455997/

Али М., Нельсон А.Р., Лопес А.Л., Сак Д. (2015). PLoS Negl Trop Dis 9 (6): e0003832.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *